Skip to main content

Advertisement

Log in

Pharmacological approaches to regulate neutrophil activity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Although indispensable in host defense against microbial pathogens, misdirected hyperacute and chronic activation of neutrophils presents the potential hazard of tissue damage, organ dysfunction, and carcinogenesis. In many clinical settings, particularly inflammatory disorders of the airways, over-reactivity of neutrophils is exacerbated by their relative resistance to conventional, pharmacological anti-inflammatory therapies, including, but not limited to, corticosteroids. Notwithstanding their sheer numbers, which can increase rapidly and dramatically during inflammatory responses, these cells are not only pre-programmed to release reactive oxygen species, proteinases, and eicosanoids/prostanoids immediately on exposure to pro-inflammatory stimuli but may also subsequently undergo the process of netosis, thereby enhancing and protracting their inflammatory potential. All of these mechanisms are likely to underpin the resistance of neutrophils to pharmacological control and have triggered the search for alternatives to corticosteroids. In addition to macrolides and adenosine 3′,5′-cyclic adenosine monophospate-elevating agents, more recent innovations in the control of neutrophilic inflammation include activators of histone deacetylases and antagonists of chemokine receptors, as well as monoclonal antibodies which target neutrophil-activating cytokines and their receptors. These and other neutrophil-targeted strategies represent the focus of the current review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116(4):625–627

    Article  CAS  PubMed  Google Scholar 

  2. Milot E, Filep JG (2011) Regulation of neutrophil survival/apoptosis by Mcl-1. Sci World J 11:1948–1962

    Article  CAS  Google Scholar 

  3. Cassatella MA (1999) Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 73:369–509

    Article  CAS  PubMed  Google Scholar 

  4. de Kleijn S, Kox M, Sama IE, Pillay J, van Diepen A, Huijnen MA, van der Hoeven JG, Ferwerda G, Hermans PWM, Pickkers P (2012) Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia. PLoS One 7(6):e38255

    Article  PubMed  Google Scholar 

  5. Sabroe I, Chilvers ER, Whyte MKB (2006). In: Laurent GS, Shapiro SD (eds), Encyclopedia of respiratory medicine. Academic Press, Boston. pp. 547–551

  6. Quint JK, Wedzicha JA (2007) The neutrophil in chronic obstructive pulmonary disease. J Allergy Clin Immunol 119(5):1065–1071

    Article  CAS  PubMed  Google Scholar 

  7. Nakagome K, Nagata M (2011) Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx 38(5):555–563

    Article  PubMed  Google Scholar 

  8. Welte T, Groneberg DA (2006) Asthma and COPD. Exp Toxicol Pathol 57(Suppl 2):35–40

    Article  PubMed  Google Scholar 

  9. Simpson JL, Scott RJ, Boyle MJ, Gibson PG (2005) Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am J Respir Crit Care Med 172(5):559–565

    Article  PubMed  Google Scholar 

  10. Fahy JV (2009) Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc 6(3):256–259

    Article  CAS  PubMed  Google Scholar 

  11. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    Article  CAS  PubMed  Google Scholar 

  12. Tam A, Sin DD (2012) Pathobiologic mechanisms of chronic obstructive pulmonary disease. Med Clin N Am 96(4):681–698

    Article  CAS  PubMed  Google Scholar 

  13. Downey DG, Bell SC, Elborn JS (2009) Neutrophils in cystic fibrosis. Thorax 64(1):81–88

    Article  CAS  PubMed  Google Scholar 

  14. Papayannopoulos V, Staab D, Zychlinsky A (2011) Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One 6(12):e28526. doi:10.1371/journal.pone.0028526

    Article  CAS  PubMed  Google Scholar 

  15. Feldman C (2012) The use of anti-inflammatory therapy and macrolides in bronchiectasis. Clin Chest Med 33(2):371–380

    Article  PubMed  Google Scholar 

  16. Aldridge AJ (2002) Role of the neutrophil in septic shock and the adult respiratory distress syndrome. Eur J Surg 168(4):204–214

    Article  CAS  PubMed  Google Scholar 

  17. Kovach MA, Standiford TJ (2012) The function of neutrophils in sepsis. Curr Opin Infect Dis 25(3):321–327

    Article  CAS  PubMed  Google Scholar 

  18. Kennedy AD, DeLeo FR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43(1–3):25–61

    Article  PubMed  Google Scholar 

  19. Galani V, Tatsiki E, Bai M, Kitsoulis P, Lekka M, Nakos G, Kanavaros P (2009) The role of apoptosis in the pathophysiology of acute respiratory distress syndrome (ARDS): An up-to-date cell-specific review. Pathol Res Pract 206(3):145–150

    Article  Google Scholar 

  20. Németh T, Mócsai A (2012) The role of neutrophils in autoimmune diseases. Immunol Lett 143(1):9–19

    Article  PubMed  Google Scholar 

  21. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19. doi:10.1126/scitranslmed.3001180

    Article  PubMed  Google Scholar 

  22. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20. doi:10.1126/scitranslmed.3001201

    Article  PubMed  Google Scholar 

  23. Vendramini-Costa DB, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Res 18(26):3831–3852

    Article  CAS  Google Scholar 

  24. Weitzman SA, Gordon LI (1990) Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 76(4):655–663

    CAS  PubMed  Google Scholar 

  25. Knaapen AM, Güngör N, Schins PF, Borm PJA, Van Schooten FJ (2006) Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 21(4):225–236

    Article  CAS  PubMed  Google Scholar 

  26. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ufman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122(1):327–336

    Article  CAS  PubMed  Google Scholar 

  27. Verbeke H, Geboes K, Van Damme J, Struyf S (2012) The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta 1825(1):117–129

    CAS  PubMed  Google Scholar 

  28. Verbeke H, Struyf S, Laureys G, Van Damme J (2011) The expression and role of CXC chemokines in colorectal cancer. Cytokine Growth Factor Rev 22(5–6):345–358

    Article  CAS  PubMed  Google Scholar 

  29. Tintinger G, Steel HC, Anderson R (2005) Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clin Exp Immunol 141(2):191–200

    Article  CAS  PubMed  Google Scholar 

  30. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    Article  CAS  PubMed  Google Scholar 

  31. Weiss SJ (1989) Tissue destruction by neutrophils. NEJM 320:365–376

    Article  CAS  PubMed  Google Scholar 

  32. Janoff A (1985) Elastase and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis 132:417–433

    CAS  PubMed  Google Scholar 

  33. Yamamori T, Inanami O, Nagahata H, Cui Y-D, Kuwabara M (2000) Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes. FEBS Lett 467:253–258

    Article  CAS  PubMed  Google Scholar 

  34. Barritt G (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signaling requirements. Biochem J 337:153–169

    Article  CAS  PubMed  Google Scholar 

  35. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677

    Article  CAS  PubMed  Google Scholar 

  36. Tintinger GR, Anderson R (2004) Counteracting effects of NADPH oxidase and the Na+/Ca2+ exchanger on membrane repolarization and store-operated uptake of Ca2+ by chemoattractant-activated human neutrophils. Biochem Pharmacol 67:2263–2271

    Article  CAS  PubMed  Google Scholar 

  37. Ohnishi H, Miyahara N, Gelfand EW (2008) The role of leukotriene B4 in allergic diseases. Allergol Int 57(4):291–298

    Article  CAS  PubMed  Google Scholar 

  38. Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP, Austen KF, Lee DM (2006) Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J Exp Med 203(4):837–842

    Article  CAS  PubMed  Google Scholar 

  39. Mathis S, Jala VR, Haribabu B (2007) Role of leukotriene B4 receptors in rheumatoid arthritis. Autoimmun Rev 7(1):12–17

    Article  CAS  PubMed  Google Scholar 

  40. Nam YH, Min A, Kim SH, Lee YA, Kim KA, Song KJ, Shin MH (2012) Leukotriene B(4) receptors BLT1 and BLT2 are involved in interleukin-8 production in human neutrophils induced by Trichomonas vaginalis-derived secretory products. Inflamm Res 61(2):97–102

    Article  CAS  PubMed  Google Scholar 

  41. Steel HC, Tintinger GR, Theron AJ, Anderson R (2007) Itraconazole-mediated inhibition of calcium entry into platelet-activating factor-stimulated human neutrophils due to interference with production of leukotriene B4. Clin Exp Immunol 150(1):144–150

    Article  CAS  PubMed  Google Scholar 

  42. St-Onge M, Flamand N, Biarc J, Picard S, Bouchard L, Dussault A-A, Laflamme C, James MJ, Caughey GE, Cleland LG, Borgeat P, Pouliot M (2007) Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)-2 pathway in human neutrophils. Biochem Biophys Acta 1771(9):1235–1245

    Article  CAS  PubMed  Google Scholar 

  43. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28

    Article  CAS  PubMed  Google Scholar 

  44. Medeiros A, Prese-Buzalaf C, Verdan FF, Serezani CH (2012) Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediat Inflamm 2012:327568

    Article  Google Scholar 

  45. Tirouvanziam R, Gernez Y, Conrad CK, Moss RB, Schrijver I, Dunn CE, Davies ZA, Herzenberg LA, Herzenberg LA (2008) Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc Natl Acad Sci USA 105(11):4335–4339

    Article  CAS  PubMed  Google Scholar 

  46. Koppe U, Suttorp N, Opitz B (2012) Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol 14(4):460–466

    Article  CAS  PubMed  Google Scholar 

  47. Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Cell 32(4):157–164

    CAS  Google Scholar 

  48. Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatol 49(9):1618–1631

    Article  CAS  Google Scholar 

  49. Ma X, Chang W, Zhang C, Zhou X, Yu F (2012) Staphylococcal Panton-Valentine leukocidin induces pro-inflammatory cytokine production and nuclear factor-kappa B activation in neutrophils. PLoS One 7(4):e34970

    Article  CAS  PubMed  Google Scholar 

  50. Cockeran R, Durandt C, Feldman C, Mitchell TJ, Anderson R (2002) Pneumolysin activates the synthesis and release of interleukin-8 by human neutrophils in vitro. J Infect Dis 186(4):562–565

    Article  CAS  PubMed  Google Scholar 

  51. Tamassia N, Bazzoni F, Le Moigne V, Calzetti F, Masala C, Grisendi G, Bussmeyer U, Scutera S, De Gironcoli M, Costantini C, Musso T, Cassatella MA (2012) IFN-β expression is directly activated in human neutrophils transfected with plasmid DNA and is further increased via TLR-4-mediated signaling. J Immunol 189(3):1500–1509

    Article  CAS  PubMed  Google Scholar 

  52. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  53. Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, Broglie PM, Marketon K, Austermann J, Vogl T, Foell D, Niemann S, Peters G, Roth J, Löffler B (2012) Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92(5):1069–1081

    Google Scholar 

  54. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, Moran B, Fitzgerald KA, Tschopp J, Pétrilli V, Andrew PW, Kadioglu A, Lavelle EC (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6(11):e1001191

    Article  PubMed  Google Scholar 

  55. Elbim C, Estaquier J (2010) Cytokines modulate neutrophil death. Eur Cytokine Netw 21(1):1–6

    CAS  PubMed  Google Scholar 

  56. Barnes PJ (2011) Glucocorticosteroids: current and future directions. Br J Pharmacol 163(1):29–43

    Article  CAS  PubMed  Google Scholar 

  57. Hirsch G, Lavoie-Lamoureux A, Beauchamp G, Lavoie J-P (2012) Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids. PLoS One 7(9):e44606

    Article  CAS  PubMed  Google Scholar 

  58. Barnes PJ (2007) New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 119(5):1055–1062

    Article  CAS  PubMed  Google Scholar 

  59. Barnes PJ (2012) Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 129(1):48–59

    Article  CAS  PubMed  Google Scholar 

  60. Sivertson KL, Seeds MC, Long DL, Peachman KK, Bass DA (2007) The differential effect of dexamethasone on granulocyte apoptosis involves stabilization of Mcl-1L in neutrophils but not in eosinophils. Cell Immunol 246(1):34–45

    Article  CAS  PubMed  Google Scholar 

  61. Madsen-Bouterse SA, Rosa GJM, Burton JL (2006) Glucocorticoid modulation of Bcl-2 family members A1 and Bak during delayed spontaneous apoptosis of bovine blood neutrophils. Endocrinol 147(8):3826–3834

    Article  CAS  Google Scholar 

  62. Saffar AS, Dragon S, Ezzati P, Shan L, Gounni AS (2008) Phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase regulate induction of Mcl-1 and survival in glucocorticoid-treated human neutrophils. J Allergy Clin Immunol 121(2):492–498

    Article  CAS  PubMed  Google Scholar 

  63. Stankova J, Turcotte S, Harris J, Rola-Pleszczynski M (2002) Modulation of leukotriene B4 receptor-1 expression by dexamethasone: potential mechanism for enhanced neutrophil survival. J Immunol 168(7):3570–3576

    CAS  PubMed  Google Scholar 

  64. Strickland I, Kisich H, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ, Leung DYM (2001) High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 193(5):585–593

    Article  CAS  PubMed  Google Scholar 

  65. Vazquez-Tello A, Semlali A, Chakir J, Martin JG, Leung DY, Eidelman DH, Hamid Q (2010) Induction of glucocorticoid receptor-beta expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. Clin Exp Allergy 40(9):1312–1322

    Article  CAS  PubMed  Google Scholar 

  66. Zijlstra GJ, ten Hacken NH, Hoffmann RF, van Oosterhout AJ, Heijink IH (2012) Interleukin-17A induces glucocorticoid insensitivity in human bronchial epithelial cells. Eur Respir J 39(2):439–445

    Article  CAS  PubMed  Google Scholar 

  67. Mercado N, Hakim A, Kobayashi Y, Meah S, Usmani OS, Chung KF, Barnes PJ, Ito K (2012) Restoration of corticosteroid sensitivity by p38 mitogen activated protein kinase inhibition in peripheral blood mononuclear cells from severe asthma. PLoS One 7(7):e41582

    Article  CAS  PubMed  Google Scholar 

  68. Schleimer RP, Freeland HS, Peters SP, Brown KE, Derse CP (1989) An assessment of the effects of glucocorticoids on degranulation, chemotaxis, binding to vascular endothelium and formation of leukotriene B4 by purified human neutrophils. J Pharmacol Exp Ther 250(2):598–605

    CAS  PubMed  Google Scholar 

  69. Gravett CM, Theron AJ, Steel HC, Tintinger GR, Cockeran R, Feldman C, Anderson R (2010) Interactive inhibitory effects of formoterol and montelukast on activated human neutrophils. Eur Respir J 36(6):1417–1424

    Article  CAS  PubMed  Google Scholar 

  70. Steel HC, Theron AJ, Cockeran R, Anderson R, Feldman C (2012) Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics. Mediat Inflamm 2012:584262

    Article  Google Scholar 

  71. Aoshiba K, Nagai A, Komo K (1997) Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 39(4):872–877

    Article  Google Scholar 

  72. Feldman C, Anderson R (2005) The cytoprotective interactions of antibiotics with human ciliated airway epithelium. In: Rubin BK, Tamaoki (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Birkhauser, Basel, pp 49–63

    Chapter  Google Scholar 

  73. Tsuchihashi Y, Oishi K, Yoshimine H, Suzuki S, Kumatori A, Sunazuka T, Omura S, Matsushima K, Nagatake T (2002) Fourteen-member macrolides suppress interleukin-8 production but do not promote apoptosis of activated neutrophils. Antimicrob Agents Chemother 46(4):1101–1104

    Article  CAS  PubMed  Google Scholar 

  74. Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S, Van Raemdonck DE, Verleden GM (2007) Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 7(1):76–82

    Article  CAS  PubMed  Google Scholar 

  75. Li M, Zhong X, He Z, Wen M, Li J, Peng X, Liu G, Deng J, Zhang J, Bai J (2012) Effect of erythromycin on cigarette-induced histone deacetylase protein expression and nuclear factor-κB acvtivity in human macrophages in vitro. Int Immunopharmacol 12(4):643–650

    Article  CAS  PubMed  Google Scholar 

  76. Tintinger GR, Anderson R, Theron AJ, Ramafi G, Ker JA (2000) Comparison of the effects of selective and non-selective beta-adrenergic agonists on the pro-inflammatory activities of human neutrophils in vitro. Inflamm 24:239–249

    Article  CAS  Google Scholar 

  77. Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32:856–864

    Article  CAS  PubMed  Google Scholar 

  78. Torphy TJ (1998) Phosphodiesterase enzymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med 157:351–370

    Article  CAS  PubMed  Google Scholar 

  79. Anderson R, Theron AJ, Gravett CM, Steel HC, Tintinger GR, Feldman C (2009) Montelukast inhibits neutrophil pro-inflammatory activity by a cyclic AMP-dependent mechanism. Br J Pharmacol 156:105–115

    Article  CAS  PubMed  Google Scholar 

  80. Gravett CM, Tintinger GR, Theron AJ, Anderson R, Feldman C, Green R (2010) Montelukast sodium: administration to children to control intermittent asthma. Clin Med Rev Ther 2:1–10

    Google Scholar 

  81. Tintinger GR, Feldman C, Theron AJ, Anderson R (2010) Montelukast: more than a cysteinyl leukotriene receptor antagonist? Sci World J 10:2403–2413

    Article  CAS  Google Scholar 

  82. Hatzelmann A, Schudt C (2001) Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J Pharmacol Exp Ther 297:267–279

    CAS  PubMed  Google Scholar 

  83. Vignola AM (2004) PDE4 inhibitors in COPD—a more selective approach to treatment. Respir Med 98:495–503

    Article  PubMed  Google Scholar 

  84. Tannheimer SL, Sorensen EA, Haran AC, Mansfield CN, Wright CD, Salmon M (2012) Additive anti-inflammatory effects of beta 2 adrenoceptor agonists or glucocorticosteroid with roflumilast in human peripheral blood mononuclear cells. Pulm Pharmacol Ther 25(2):178–184

    Article  CAS  PubMed  Google Scholar 

  85. Tintinger GR, Steel HC, Theron AJ, Anderson R (2009) Pharmacological control of neutrophil-mediated inflammation: strategies targeting calcium handling by activated polymorphonuclear leukocytes. Drug Des Dev Ther 2:95–104

    Google Scholar 

  86. Steel HC, Tintinger GR, Anderson R (2008) Comparison of the anti-inflammatory activities of imidazole antimycotics in relation to molecular structure. Chem Biol Drug Des 72(3):225–228

    Article  CAS  PubMed  Google Scholar 

  87. Steel HC, Theron AJ, Tintinger GR, Anderson R (2009) Posaconazole attenuates leukotriene B4 release and uptake of calcium by chemoattractant-activated human neutrophils: a potential strategy to control neutrophil-mediated inflammation. J Antimicrob Chemother 64(5):1008–1012

    Article  CAS  PubMed  Google Scholar 

  88. Ramires R, Caiaffa ME, Tursi A, Haeggström JZ, Macchia L (2004) Novel inhibitory effects on 5-lipoxygenase activity by the anti-asthma drug montelukast. Biochem Biophys Res Comm 324(2):815–821

    Article  CAS  PubMed  Google Scholar 

  89. Woszczek G, Chen LY, Alsaaty S, Nagineni S, Shelhamer JH (2010) Concentration-dependent noncysteinyl leukotriene type 1 receptor-mediated inhibitory activity of leukotriene receptor antagonists. J Immunol 184(4):2219–2225

    Article  CAS  PubMed  Google Scholar 

  90. Theron AJ, Gravett CM, Steel HC, Tintinger GR, Feldman C, Anderson R (2009) Leukotrienes C4 and D4 sensitize human neutrophils for hyperreactivity to chemoattractants. Inflamm Res 58(5):263–268

    Article  CAS  PubMed  Google Scholar 

  91. Serezani CH, Ballinger MN, Aranoff DM, Peters-Golden M (2008) Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 39(2):127–132

    Article  CAS  PubMed  Google Scholar 

  92. Stables MJ, Gilroy DW (2011) Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 50(1):35–51

    Article  CAS  PubMed  Google Scholar 

  93. Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P (2012) Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 42(7):1097–1103

    Article  CAS  PubMed  Google Scholar 

  94. Moss RB, Mistry SJ, Konstan MW, Pilewski JM, Kerem E, Tal-Singer R, Lazaar AL (2013) Safety and early treatment effects of the CXCR2 antagonist SB-656933 in patients with cystic fibrosis. J Cyst Fibros. doi:10.1016/j.jcf.2012.08.016

  95. Lazaar AL, Sweeney LE, MacDonald AJ, Alexis NE, Chen C, Tal-Singer R (2011) SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br J Clin Pharmacol 72(2):282–293

    Article  CAS  PubMed  Google Scholar 

  96. Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Nagulapalli Venkata KC, Louie SG, Petasis NA, Ladner RD, Lenz HJ (2012) The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther 11(6):1353–1364

    Article  CAS  PubMed  Google Scholar 

  97. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, Antoni C, Draelos Z, Gold MH, Psoriasis Study Group, Durez P, Tak PP, Gomez-Reino JJ, Rheumatoid Arthritis Study Group, Foster CS, Kim RY, Samson CM, Falk NS, Chu DS, Callanan D, Nguyen QD, Uveitis Study Group, Rose K, Haider A, Di Padova F (2010) Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2(52):52ra72

    Article  PubMed  Google Scholar 

  98. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, Braun D, Banerjee S (2012) Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 366(13):1190–1199

    Article  CAS  PubMed  Google Scholar 

  99. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JGB, Kricorian G, Aras G, Li J, Russell CB, Thompson EH, Baumgartner S (2012) Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med 366(13):1181–1189

    Article  CAS  PubMed  Google Scholar 

  100. Miossec P, Kolls JK (2012) Targeting IL-17 and T(H)17 cells in chronic inflammation. Nat Rev Drug Discov 11(10):763–776

    Article  CAS  PubMed  Google Scholar 

  101. Huang H-Y, Caballero B, Chang S, Alberg AJ, Semba RD et al (2006) The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: a systematic review for a National Institutes of Health State-of-the-Science Conference. Ann Intern Med 145:372–385

    Article  CAS  PubMed  Google Scholar 

  102. Tintinger GR, Theron AJ, Steel HC, Anderson R (2000) Accelerated calcium influx and hyperactivation of neutrophils in chronic granulomatous disease. Clin Exp Immunol 123:254–263

    Article  Google Scholar 

Download references

Acknowledgments

Charles Feldman is supported by the National Research Foundation of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Tintinger.

Additional information

This article is a contribution to the special issue on Neutrophils - Guest Editors: Paul Hasler and Sinuhe Hahn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tintinger, G.R., Anderson, R. & Feldman, C. Pharmacological approaches to regulate neutrophil activity. Semin Immunopathol 35, 395–409 (2013). https://doi.org/10.1007/s00281-013-0366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-013-0366-8

Keywords

Navigation