Skip to main content

Epigenetic Mechanisms in Food Allergy

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 105 Accesses

Abstract

Community rates of food allergy have been rising over the last 25 years at a rate too rapid to be explained by changes in genetics. Environmental changes brought about by urban development and industrialization have been linked to rising rates of food allergy. Modern environments are now less favorable for promoting healthy immune development in early life, and factors such as reduced microbial diversity and vitamin D insufficiency have been associated with higher rates of food allergy in young children. Epigenetic mechanisms such as DNA methylation mediate changes in gene expression, in response to environmental factors, and epigenetic states can be passed down to subsequent generations. Epigenetic mechanisms therefore provide a framework for understanding the mechanisms linking environment, genes, and the development of food allergies. Recent evidence suggests epigenetic perturbation at immune system genes is associated with childhood food allergy. The search for the causes of epigenetic disruption and the specific factors involved is now underway. Work in this area is anticipated to enhance our understanding of gene – environment interactions and their role in complex immune diseases like food allergy. In this review, we discuss the relevance of epigenetic research in understanding childhood food allergies and offer a state-of-play for scientific advancements in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CD:

Cluster of differentiation

DBPCFC:

Double-blind placebo-controlled food challenge

DNA:

Deoxyribose nucleic acid

DNAm:

DNA methylation

DoHAD:

Developmental origins of health and disease

EWAS:

Epigenome-wide association study

IL:

Interleukin

MAPK:

Mitogen-activated kinase K

NF κB:

Nuclear Factor kappa B

SNP:

Single nucleotide polymorphism

Th:

T-helper

TNF:

Tumor necrosis factor

References

  • Allen KJ (2011) Food allergy: is there a rising prevalence and if so why? Med J Aust 195(1):5–7

    Article  PubMed  Google Scholar 

  • Allen KJ, Koplin JJ, Ponsonby A-L et al (2013) Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J Allergy Clin Immunol 131(4):1109–1116. 1116.e1–6

    Article  CAS  PubMed  Google Scholar 

  • Andraos C, Koorsen G, Knight JC et al (2011) Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol 72(3):262–268

    Article  CAS  PubMed  Google Scholar 

  • Ashley SE, Tan H-TT, Vuillermin P et al (2017) The skin barrier function gene SPINK5 is associated with challenge proven IgE-mediated food allergy in infants. Allergy 45:255

    Google Scholar 

  • Bauer T, Trump S, Ishaque N et al (2016) Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 12(3):861–861. EMBO Press; PMCID: PMC4812527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broeske A-M, Vockentanz L, Kharazi S et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41(11):1207–1269

    Article  CAS  Google Scholar 

  • Canani RB, Paparo L, Nocerino R et al (2015) Differences in dna methylation profile of th1 and th2 cytokine genes are associated with tolerance acquisition in children with ige-mediated cow’s milk allergy. Clin Epigenetics 7(1):1–9. Springer

    Article  CAS  Google Scholar 

  • Challacombe DN (1983) The incidence of coeliac disease and early weaning. Arch Dis Child 58(5):326. BMJ Publishing Group; PMCID: PMC1627868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi GC, Liu Y, MacDonald JW et al (2016) Long-term outdoor air pollution and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health 15(1):2224. 2nd ed. BioMed Central

    Article  CAS  Google Scholar 

  • Dominguez-Salas P, Moore SE, Baker MS et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746. PMCID: PMC4015319

    Article  CAS  PubMed  Google Scholar 

  • Fall CHD (2012) Fetal programming and the risk of noncommunicable disease. Indian J Pediatr 80(S1):13–20

    Article  Google Scholar 

  • Friedman A, Weiner HL (1994) Induction of anergy or active suppression following oral tolerance is determined by Antigen Dosage. Proc Natl Acad Sci 91(14):6688–6692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Hanson MA, Beedle AS (2007) Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 19(1):1–19

    Article  PubMed  Google Scholar 

  • Hong X, Tsai H-J, Wang X (2009) Genetics of food allergy. Curr Opin Pediatr 21(6):770–776

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong X, Hao K, Ladd-Acosta C et al (2015) Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6:6304. PMCID: PMC4340086

    Article  CAS  PubMed  Google Scholar 

  • Hong X, Ladd-Acosta C, Hao K et al (2016) Epigenome-wide association study links site-specific DNA methylation changes with cow’s milk allergy. J Allergy Clin Immunol 138:908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell WM, Turner SJ, Hourihane JO et al (1998) HLA class II DRB1, DQB1 and DPB1 genotypic associations with peanut allergy: evidence from a family-based and case-control study. Clin Exp Allergy 28(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Kilpelainen M, Terho EO, Helenius H, Koskenvuo M (2000) Farm environment in childhood prevents the development of allergies. Clin Exp Allergy 30(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Koplin J, Allen K, Gurrin L et al (2008) Is caesarean delivery associated with sensitization to food allergens and IgE-mediated food allergy: a systematic review. Pediatr Allergy Immunol 19(8):682–687

    Article  PubMed  Google Scholar 

  • Koplin JJ, Osborne NJ, Wake M et al (2010) Can early introduction of egg prevent egg allergy in infants? A population-based study. J Allergy Clin Immunol 126(4):807–813

    Article  PubMed  Google Scholar 

  • Koplin JJ, Martin PE, Allen KJ (2011) An update on epidemiology of anaphylaxis in children and adults. Curr Opin Allergy Clin Immunol 11(5):492–496

    Article  PubMed  Google Scholar 

  • Koplin JJ, Dharmage SC, Ponsonby AL et al (2012) Environmental and demographic risk factors for egg allergy in a population-based study of infants. Allergy 67(11):1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Madore A-M, Vaillancourt VT, Asai Y et al (2013) HLA-DQB1*02 and DQB1*06:03P are associated with peanut allergy. Eur J Hum Genet 21(10):1181–1184. PMCID: PMC3778350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martino DJ, Bosco A, McKenna KL, Hollams E et al (2012) T-cell activation genes differentially expressed at birth in CD4+ T-cells from children who develop IgE food allergy. Allergy 67(2):191–200

    Article  CAS  PubMed  Google Scholar 

  • Martino D, Joo JE, Sexton-Oates A, Dang T et al (2014a) Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics 9(7):998–1006. PMCID: PMC4143415

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino D, Kesper DA, Amarasekera M et al (2014b) Epigenetics in immune development and in allergic and autoimmune diseases. J Reprod Immunol 104–105:43–48

    Article  PubMed  CAS  Google Scholar 

  • Martino D, Dang T, Sexton-Oates A et al (2015) Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol 135(5):1319–1328e12. Mosby Inc

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam AE, Hillson WR, Noti M et al (2014) Dry roasting enhances peanut-induced allergic sensitization across mucosal and cutaneous routes in mice. J Allergy Clin Immunol 134(6):1453–1456

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    CAS  PubMed  Google Scholar 

  • Mullins RJ, Camargo CA (2012) Latitude, sunlight, vitamin D, and childhood food allergy/anaphylaxis. Curr Allergy Asthma Rep 12(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Novakovic B, Habibi E, Wang S-Y et al (2016) β-glucan reverses the Epigenetic State of LPS-induced immunological tolerance. Cell 167(5):1354–1368.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak-Wegrzyn A, Szajewska H, Lack G (2016) Food allergy and the gut. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/nrgastro.2016.187

  • Paparo L, Nocerino R, Cosenza L et al (2016) Epigenetic features of FoxP3 in children with cow’s milk allergy. Clin Epigenetics 8(1):86. PMCID: PMC4981981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrus NCM, Henneman P, Venema A et al (2016) Cow’s milk allergy in Dutch children: an epigenetic pilot survey. Clin Transl Allergy 6(1):16. BioMed Central Ltd

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prescott SL (2013) Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol 131(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Prescott S, Allen KJ (2011) Food allergy: riding the second wave of the allergy epidemic. Pediatr Allergy Immunol 22(2):155–160. Blackwell Publishing Ltd

    Article  PubMed  Google Scholar 

  • Prescott SL, Pawankar R, Allen KJ et al (2013) A global survey of changing patterns of food allergy burden in children. World Allergy Organ J 6(1):21. PMCID: PMC3879010

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampson HA (1999) Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol 103(5):717–728

    Article  CAS  PubMed  Google Scholar 

  • Smith M, Tourigny MR, Noakes P et al (2008) Children with egg allergy have evidence of reduced neonatal CD4+ CD25+ CD127 lo/− regulatory T cell function. J Allergy Clin Immunol 121(6):1460–1467. Elsevier

    Article  CAS  PubMed  Google Scholar 

  • Smith PK, Masilamani M, Li X-M, Sampson HA (2017) The false alarm hypothesis: food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol 139(2):429–437

    Article  CAS  PubMed  Google Scholar 

  • Strachan D (1989) Hay fever, hygeine, and household size. Br Med J 299:1259–1260

    Article  CAS  Google Scholar 

  • Syed A, Garcia MA, Lyu S-C et al (2014) Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol 133(2):500–510. PMCID: PMC4121175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40(6):833–842

    Article  CAS  PubMed  Google Scholar 

  • Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592. PMCID: PMC4246417

    Article  CAS  PubMed  Google Scholar 

  • Toit du G, Roberts G, Sayre PH et al (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372(9):803–813

    Article  CAS  Google Scholar 

  • Tulic MK, Hodder M, Forsberg A et al (2011) Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J Allergy Clin Immunol 127(2):470–471

    Article  CAS  PubMed  Google Scholar 

  • Vercelli D (2004) Genetics, epigenetics, and the environment: switching, buffering, releasing. J Allergy Clin Immunol 113(3):381–386. quiz387

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yang IV, Davidson EJ et al (2017) Forkhead box protein 3 (FoxP3) demethylation is associated with tolerance induction in peanut-induced intestinal allergy. J Allergy Clin Immunol [epub ahead of print]

    Google Scholar 

  • Waterland RA, Dolinoy DC, Lin JR et al (2006) Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis 44(9):401–406

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Kellermayer R, Laritsky E (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Collier F, Naselli G et al (2016) Cord blood monocyte-derived inflammatory cytokines suppress IL-2 and induce nonclassic “T(H)2-type” immunity associated with development of food allergy. Sci Transl Med 8(321):321ra8–321ra8

    Article  PubMed  CAS  Google Scholar 

  • Zutavern A, Brockow I, Schaaf B et al (2006) Timing of solid food introduction in relation to atopic dermatitis and atopic sensitization: results from a prospective Birth Cohort Study. Pediatrics 117(2):401–411

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Martino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martino, D.J. (2019). Epigenetic Mechanisms in Food Allergy. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics