Skip to main content
Log in

Role of Nox2 in elimination of microorganisms

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

NADPH oxidase of the phagocytic cells (Nox2) transfers electrons from cytosolic NADPH to molecular oxygen in the extracellular or intraphagosomal space. The produced superoxide anion (O2 ·−) provides the source for formation of all toxic oxygen derivatives, but continuous O2 ·− generation depends on adequate charge compensation. The vital role of Nox2 in efficient elimination of microorganisms is clearly indicated by human pathology as insufficient activity of the enzyme results in severe, recurrent bacterial infections, the typical symptoms of chronic granulomatous disease. The goals of this contribution are to provide critical review of the Nox2-dependent cellular processes that potentially contribute to bacterial killing and degradation and to indicate possible targets of pharmacological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S et al (2004) The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 427:853–858 doi:10.1038/nature02356

    Article  PubMed  CAS  Google Scholar 

  2. Allen RC, Stjernholm RL, Steele RH (1972) Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun 47:679–684 doi:10.1016/0006-291X(72)90545-1

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311 doi:10.1007/s00726-003-0018-8

    Article  PubMed  CAS  Google Scholar 

  4. Arruda MA, Barcellos-de-Souza P, Sampaio AL, Rossi AG, Graca-Souza AV, Barja-Fidalgo C (2006) NADPH oxidase-derived ROS: key modulators of heme-induced mitochondrial stability in human neutrophils. Exp Cell Res 312:3939–3948 doi:10.1016/j.yexcr.2006.08.022

    Article  PubMed  CAS  Google Scholar 

  5. Babior BM, Curnutte JT, Kipnes RS (1975) Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthin oxidase. J Lab Clin Med 85:235–244

    PubMed  CAS  Google Scholar 

  6. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense machanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744 doi:10.1172/JCI107236

    Article  PubMed  CAS  Google Scholar 

  7. Babior BM, Takeuchi C, Ruedi J, Gutierrez A, Wentworth P Jr (2003) Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci USA 100:3031–3034 doi:10.1073/pnas.0530251100

    Article  PubMed  CAS  Google Scholar 

  8. Bánfi B, Schrenzel J, Nüsse O, Lew DP, Ligeti E, Krause KH et al (1999) A novel H(+) conductance in eosinophils: unique characteristics and absence in chronic granulomatous disease. J Exp Med 190:183–194 doi:10.1084/jem.190.2.183

    Article  PubMed  Google Scholar 

  9. Becker EL, Talley V, Showell HJ, Naccache PH, Sha’afi RI (1978) Activation of the rabbit polymorphonuclear leukocyte membrane “Na+, K+”-ATPase by chemotactic factor. J Cell Biol 77:329–333 doi:10.1083/jcb.77.2.329

    Article  PubMed  CAS  Google Scholar 

  10. Behe P, Segal AW (2007) The function of the NADPH oxidase of phagocytes, and its relationship to other NOXs. Biochem Soc Trans 35:1100–1103 doi:10.1042/BST0351100

    Article  PubMed  CAS  Google Scholar 

  11. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16:401–407 doi:10.1016/j.cub.2006.01.056

    Article  PubMed  CAS  Google Scholar 

  12. Borregaard N, Sorensen OE, Theilgaard-Mönch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28:340–345 doi:10.1016/j.it.2007.06.002

    Article  PubMed  CAS  Google Scholar 

  13. Brinkmann V, Reichard U, Goosman C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535 doi:10.1126/science.1092385

    Article  PubMed  CAS  Google Scholar 

  14. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Natl Rev 5:577–582 doi:10.1038/nrmicro1710

    Article  CAS  Google Scholar 

  15. Britigan BE, Hassett DJ, Rosen GM, Hammil DR, Cohen MS (1989) Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact on myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques. Biochem J 264:447–455

    PubMed  CAS  Google Scholar 

  16. Brown JR, Goldblatt D, Buddle J, Morton L, Thrasher AJ (2003) Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease. J Leukoc Biol 73:591–599 doi:10.1189/jlb.1202599

    Article  PubMed  CAS  Google Scholar 

  17. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M et al (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16:396–400 doi:10.1016/j.cub.2005.12.039

    Article  PubMed  CAS  Google Scholar 

  18. Busetto S, Trevisan E, Decleva E, Dri P, Menegazzi R (2007) Chloride movements in human neutrophils during phagocytosis: characterization and relationship to granule release. J Immunol 179:4110–4124

    PubMed  CAS  Google Scholar 

  19. Cale CM, Jones AM, Goldblatt D (2000) Follow up of patients with chronic granulomatous disease diagnosed since 1990. Clin Exp Immunol 120:351–355 doi:10.1046/j.1365-2249.2000.01234.x

    Article  PubMed  CAS  Google Scholar 

  20. Chapman ALP, Hampton MB, Santhilmohan R, Winterbourn CC (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcu aureus. J Biol Chem 277:9757–9762 doi:10.1074/jbc.M106134200

    Article  PubMed  CAS  Google Scholar 

  21. Cherny VV, Henderson LM, Xu W, Thomas LL, DeCoursey TE (2001) Activation of NADPH oxidase-related proton and electron currents in human eosinophils by arachidonic acid. J Physiol 535:783–794 doi:10.1111/j.1469-7793.2001.00783.x

    Article  PubMed  CAS  Google Scholar 

  22. Cherny VV, Markin VS, DeCoursey TE (1995) The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J Gen Physiol 105:861–896 doi:10.1085/jgp.105.6.861

    Article  PubMed  CAS  Google Scholar 

  23. Clifford DP, Repine JE (1982) Hydrogen peroxide mediated killing of bacteria. Mol Cell Biochem 49:143–149 doi:10.1007/BF00231175

    Article  PubMed  CAS  Google Scholar 

  24. Cohen MS, Britigan BE, Chai YS, Pou S, Roeder TL, Rosen GM (1991) Phagocyte-derived free radicals stimulated by ingestion of iron rich Staphylococcus aureus: a spin trapping study. J Infect Dis 163:819–824

    PubMed  CAS  Google Scholar 

  25. Coulthard CE, Short WF, Michaelis R, Sykes G, Skrimshire GEH, Standfast AFB et al (1942) Notatin: an anti-bacterial glucose-aerodehydrogenase from Penicillium notatum wrestling. Nature 150:148–150 doi:10.1038/150634a0

    Article  Google Scholar 

  26. Coxon A, Rieu P, Barkalow FJ, Askari S, Sharpe AH, von Andrian UH et al (1996) A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5:653–666 doi:10.1016/S1074-7613(00)80278-2

    Article  PubMed  Google Scholar 

  27. DeCoursey TE (2004) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83:475–579

    Google Scholar 

  28. DeCoursey TE (2007) Electrophysiology of the phagocyte respiratory burst. Focus on “Large-conductance calcium-activated potassium channel activity is absent in human and mouse neutrophils and is not required for innate immunity”. Am J Physiol Cell Physiol 293:C30–C32 doi:10.1152/ajpcell.00093.2007

    Article  PubMed  CAS  Google Scholar 

  29. DeCoursey TE, Cherny VV (1993) Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J 65:1590–1598

    Article  PubMed  CAS  Google Scholar 

  30. DeCoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–2193 doi:10.1007/s00018-005-5177-1

    Article  PubMed  CAS  Google Scholar 

  31. DeCoursey TE, Morgan D, Cherny VV (2003) The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531–534 doi:10.1038/nature01523

    Article  PubMed  CAS  Google Scholar 

  32. Demaurex N, Grinstein S, Jaconi M, Schlegel W, Lew DP, Krause KH (1993) Proton currents in human granulocytes: regulation by membrane potential and intracellular pH. J Physiol 466:329–344

    PubMed  CAS  Google Scholar 

  33. Duprat F, Girard C, Jarretou G, Lazdunski M (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562:235–244 doi:10.1113/jphysiol.2004.071266

    Article  PubMed  CAS  Google Scholar 

  34. Essin K, Salanova B, Kettritz R, Sausbier M, Luft FC, Kraus D et al (2007) Large-conductance calcium-activated potassium channel activity is absent in human and mouse neutrophils and is not required for innate immunity. Am J Physiol Cell Physiol 293:C45–C54 doi:10.1152/ajpcell.00450.2006

    Article  PubMed  CAS  Google Scholar 

  35. Fadeel B, Ahlin A, Henter JI, Orrenius S, Hampton MB (1998) Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 92:4808–4818

    PubMed  CAS  Google Scholar 

  36. Fay AJ, Qian X, Jan YN, Jan LY (2006) SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc Natl Acad Sci USA 103:17548–17553 doi:10.1073/pnas.0607914103

    Article  PubMed  CAS  Google Scholar 

  37. Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirják G et al (2006) The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J Gen Physiol 127:659–672 doi:10.1085/jgp.200609504

    Article  PubMed  CAS  Google Scholar 

  38. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241 doi:10.1083/jcb.200606027

    Article  PubMed  CAS  Google Scholar 

  39. Gamberale R, Giordano M, Trevani AS, Andonegui G, Geffner JR (1998) Modulation of human neutrophil apoptosis by immune complexes. J Immunol 161:2666–3674

    Google Scholar 

  40. Geiszt M, Kapus A, Ligeti E (2001) Chronic granulomatous disease: more than the lack of superoxide? J Leukoc Biol 69:191–196

    PubMed  CAS  Google Scholar 

  41. Geiszt M, Kapus A, Német K, Farkas L, Ligeti E (1997) Regulation of capacitative Ca2+ influx in human neutrophil granulocytes. Alterations in chronic granulomatous disease. J Biol Chem 272:26471–26478 doi:10.1074/jbc.272.42.26471

    Article  PubMed  CAS  Google Scholar 

  42. Green DE, Pauli R (1943) The antibacterial action of the xanthine oxidase system. Proc Soc Exp Biol Med 54:148–150

    CAS  Google Scholar 

  43. Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S (2005) Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol 66:1146–1154 doi:10.1016/j.humimm.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  44. Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515 doi:10.1016/j.tibs.2006.07.005

    Article  PubMed  CAS  Google Scholar 

  45. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  46. Hampton MB, Vissers MC, Keenan JI, Winterbourn CC (2002) Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease. J Leukoc Biol 71:775–781

    PubMed  CAS  Google Scholar 

  47. Hatanaka E, Carvalho BTC, Condino-Neto A, Campa A (2004) Hyperresponsiveness of neutrophils from gp91phox deficient patients to lipopolysaccharide and serum amyloid A. Immunol Lett 94:43–46 doi:10.1016/j.imlet.2004.04.016

    Article  PubMed  CAS  Google Scholar 

  48. Henderson LM, Chappell JB (1992) The NADPH-oxidase-associated H+ channel is opened by arachidonate. Biochem J 283:171–175

    PubMed  CAS  Google Scholar 

  49. Henderson LM, Chappell JB, Jones OT (1987) The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246:325–329

    PubMed  CAS  Google Scholar 

  50. Henderson LM, Chappell JB, Jones OT (1988) Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem J 255:285–290

    PubMed  CAS  Google Scholar 

  51. Hirche TO, Gaut JP, Heinecke JW, Belaaouaj A (2005) Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense. J Immunol 174:1557–1565

    PubMed  CAS  Google Scholar 

  52. Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108:925–944 doi:10.1084/jem.108.6.925

    Article  PubMed  CAS  Google Scholar 

  53. Holland SM, Gallin JI (1999) Disorders of phagocytic cells. In: Gallin JI, Snyderman R (eds) Inflammation. 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  54. Ismail G, Sawyer WD, Wegener WS (1977) Effect of hydrogen peroxide and superoxide radicals on viability of Neisseria gonorrhoeae and related bacteria. Proc Soc Exp Biol Med 155:264–269

    PubMed  CAS  Google Scholar 

  55. Jackson S, Gallin J, Holland S (1995) The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med 182:751–758 doi:10.1084/jem.182.3.751

    Article  PubMed  CAS  Google Scholar 

  56. Jankowski A, Grinstein S (1999) A noninvasive fluorimetric procedure for measurement of membrane potential. Quantification of the NADPH oxidase-induced depolarization in activated neutrophils. J Biol Chem 274:26098–26104 doi:10.1074/jbc.274.37.26098

    Article  PubMed  CAS  Google Scholar 

  57. Jankowski A, Scott CC, Grinstein S (2002) Determinants of the phagosomal pH in neutrophils. J Biol Chem 277:6059–6066 doi:10.1074/jbc.M110059200

    Article  PubMed  CAS  Google Scholar 

  58. Jiang Q, Griffin DA, Barofsky DF, Hurst JK (1997) Intraphagosomal chlorination dynamics and yields determined using unique fluorescent bacterial mimics. Chem Res Toxicol 10:1080–1089 doi:10.1021/tx9700984

    Article  PubMed  CAS  Google Scholar 

  59. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R et al (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38:3000–3006 doi:10.1161/STROKEAHA.107.489765

    Article  PubMed  CAS  Google Scholar 

  60. Káldi K, Szászi K, Suszták K, Kapus A, Ligeti E (1994) Lymphocytes possess an electrogenic H(+)-transporting pathway in their plasma membrane. Biochem J 301:329–334

    PubMed  Google Scholar 

  61. Káldi K, Szeberényi J, Rada BK, Kovács P, Geiszt M, Mócsai A et al (2002) Contribution of phopholipase D and a brefeldin A-sensitive ARF to chemoattractant-induced superoxide production and secretion of human neutrophils. J Leukoc Biol 71:695–700

    PubMed  Google Scholar 

  62. Kang D, Kim D (2004) Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun 315:836–844 doi:10.1016/j.bbrc.2004.01.137

    Article  PubMed  CAS  Google Scholar 

  63. Kapus A, Romanek R, Grinstein S (1994) Arachidonic acid stimulates the plasma membrane H+ conductance of macrophages. J Biol Chem 269:4736–4745

    PubMed  CAS  Google Scholar 

  64. Kapus A, Romanek R, Qu AY, Rotstein OD, Grinstein S (1993) A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol 102:729–760 doi:10.1085/jgp.102.4.729

    Article  PubMed  CAS  Google Scholar 

  65. Kapus A, Suszták K, Ligeti E (1993) Regulation of the electrogenic H+ channel in the plasma membrane of neutrophils: possible role of phospholipase A2, internal and external protons. Biochem J 292:445–450

    PubMed  CAS  Google Scholar 

  66. Kapus A, Szászi K, Ligeti E (1992) Phorbol 12-myristate 13-acetate activates an electrogenic H(+)-conducting pathway in the membrane of neutrophils. Biochem J 281:697–701

    PubMed  CAS  Google Scholar 

  67. Kasahara Y, Iwai K, Yachie A, Ohta K, Konno A, Seki H et al (1997) Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89:1748–1753

    PubMed  CAS  Google Scholar 

  68. Kettle AJ, Clark BM, Winterbourn CC (2004) Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone. J Biol Chem 279:18521–18525 doi:10.1074/jbc.M400334200

    Article  PubMed  CAS  Google Scholar 

  69. Kettle AJ, Winterbourn CC (2005) Do neutrophils produce ozone? An appraisal of current evidence. Biofactors 24:41–45

    PubMed  CAS  Google Scholar 

  70. Klebanoff SJ (1967) Iodination of bacteria: a bactericidal mechanism. J Exp Med 126:1063–1076 doi:10.1084/jem.126.6.1063

    Article  PubMed  CAS  Google Scholar 

  71. Klebanoff SJ (1968) Myeloperoxidase–halide–hydrogen peroxide antibacterial system. J Bacteriol 95:2131–2138

    PubMed  CAS  Google Scholar 

  72. Klebanoff SJ (1999) Oxygen metabolites from phagocytes. In: Gallin JI, Synderman R (eds) Inflammation. Basic principles and clinical correlates. 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 721–769

    Google Scholar 

  73. Klebanoff SJ, White LR (1969) Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood. N Engl J Med 280:460–466

    PubMed  CAS  Google Scholar 

  74. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625 doi:10.1189/jlb.1204697

    Article  PubMed  CAS  Google Scholar 

  75. Kobayashi SD, Voyich JM, Braughton KR, Whitney AR, Nauseef WM, Malech HL et al (2004) Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J Immunol 172:636–643

    PubMed  CAS  Google Scholar 

  76. Kocholaty W (1943) Purification and properties of the second antibacterial substance produced by Penicillium notatum. Science 97:186–187 doi:10.1126/science.97.2512.186

    Article  PubMed  CAS  Google Scholar 

  77. Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A et al (2000) NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 106:867–872 doi:10.1172/JCI9020

    Article  PubMed  CAS  Google Scholar 

  78. Korchak HM, Roos D, Giedd KN, Wynkoop EM, Vienne K, Rutherford LE et al (1983) Granulocytes without degranulation: neutrophil function in granule-depleted cytoplasts. Proc Natl Acad Sci USA 80:4968–4972 doi:10.1073/pnas.80.16.4968

    Article  PubMed  CAS  Google Scholar 

  79. Korshunov SS, Imlay JA (2002) A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol Microbiol 43:95–106 doi:10.1046/j.1365-2958.2002.02719.x

    Article  PubMed  CAS  Google Scholar 

  80. Krause KH, Welsh MJ (1990) Voltage-dependent and Ca2(+)-activated ion channels in human neutrophils. J Clin Invest 85:491–498 doi:10.1172/JCI114464

    Article  PubMed  CAS  Google Scholar 

  81. Ladoux A, Abita JP, Geny B (1986) Retinoic-acid-induced differentiation of HL-60 cells is associated with biphasic activation of the Na+–K+ pump. Differentiation 33:142–147 doi:10.1111/j.1432-0436.1986.tb00419.x

    Article  PubMed  CAS  Google Scholar 

  82. Lambeth D, Krause KH, Clark RA (2008) NOX enzymes as novel targets of drug development. Semin Immunopathol (in press), (in this volume)

  83. Lekstrom-Himes JA, Kuhns DB, Alvord WG, Gallin JI (2005) Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J Immunol 174:411–417

    PubMed  CAS  Google Scholar 

  84. Lew PD, Wollheim C, Seger RA, Pozzan T (1984) Cytosolic free calcium changes induced by chemotactic peptide in neutrophils from patients with chronic granulomatous disease. Blood 63:231–233

    PubMed  CAS  Google Scholar 

  85. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF et al (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215 doi:10.1084/jem.20050846

    Article  PubMed  CAS  Google Scholar 

  86. Lundqvist-Gustafsson H, Bengtsson T (1999) Activation of the granule pool of the NADPH oxidase accelerates apoptosis in human neutrophils. J Leukoc Biol 65:196–204

    PubMed  CAS  Google Scholar 

  87. Marcinkiewicz J, Biedroń R, Białecka A, Kasprowicz A, Mak M, Targosz M (2006) Susceptibility of Propionibacterium acnes and Staphylococcus epidermidis to killing by MPO–halide system products. Implication for taurine bromamine as a new candidate for topical therapy in treating acne vulgaris. Arch Immunol Ther Exp (Warsz) 54:61–68 doi:10.1007/s00005-006-0007-1

    Article  CAS  Google Scholar 

  88. Martinelli S, Urosevic M, Daryadel A, Oberholzer PA, Baumann C, Fey MF et al (2004) Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 279:44123–44132 doi:10.1074/jbc.M405883200

    Article  PubMed  CAS  Google Scholar 

  89. Menegazzi R, Busetto S, Dri P, Cramer R, Patriarca P (1996) Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-alpha (TNF) on biologic surfaces. J Cell Biol 135:511–522 doi:10.1083/jcb.135.2.511

    Article  PubMed  CAS  Google Scholar 

  90. Miyasaki KT, Wilson ME, Genco RJ (1986) Killing of Actinobacillus actinomycetemcomitans by the human neutrophil myeloperoxidase–hydrogen peroxide–chloride system. Infect Immun 53:161–165

    PubMed  CAS  Google Scholar 

  91. Mócsai A, Jakus Z, Vántus T, Berton G, Lowell CA, Ligeti E (2000) Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by Src family kinases. J Immunol 164:4321–4331

    PubMed  Google Scholar 

  92. Molloy S (2006) Bacterial pathogenesis: escaping the net. Nat Rev Microbiol 4:242–243 doi:10.1038/nrmicro1409

    Article  CAS  Google Scholar 

  93. Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS (2006) Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281:12277–12288 doi:10.1074/jbc.M511030200

    Article  PubMed  CAS  Google Scholar 

  94. Morgan D, Cherny VV, Murphy R, Xu W, Thomas LL, DeCoursey TE (2003) Temperature dependence of NADPH oxidase in human eosinophils. J Physiol 550:447–558 doi:10.1113/jphysiol.2003.041525

    Article  PubMed  CAS  Google Scholar 

  95. Morgenstern DE, Gifford MAC, Li LL, Doerschuk CM, Dinauer MC (1997) Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185:207–218 doi:10.1084/jem.185.2.207

    Article  PubMed  CAS  Google Scholar 

  96. Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011 doi:10.1016/j.bbabio.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  97. Myers JB, Cantiello HF, Schwartz JH, Tauber AI (1990) Phorbol ester-stimulated human neutrophil membrane depolarization is dependent on Ca2(+)-regulated Cl− efflux. Am J Physiol 259:C531–C540

    PubMed  CAS  Google Scholar 

  98. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848 doi:10.1073/pnas.97.16.8841

    Article  PubMed  CAS  Google Scholar 

  99. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182 doi:10.1038/nri1785

    Article  PubMed  CAS  Google Scholar 

  100. Odell EW, Segal AW (1988) The bactericidal effects of the respiratory burst and the myeloperoxidase system isolated in neutrophil cytoplasts. Biochim Biophys Acta 971:266–274

    PubMed  CAS  Google Scholar 

  101. O’Rourke EJ, Chevalier C, Pinto AV, Thiberge JM, Ielpi L, Labigne A et al (2003) Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci USA 100:2789–2794 doi:10.1073/pnas.0337641100

    Article  PubMed  CAS  Google Scholar 

  102. Ottonello L, Frumento G, Arduino N, Dapino P, Tortolina G, Dallegri F (2001) Immune complex stimulation of neutrophil apoptosis: investigating the involvement of oxidative and nonoxidative pathways. Free Radic Biol Med 30:161–169 doi:10.1016/S0891-5849(00)00453-6

    Article  PubMed  CAS  Google Scholar 

  103. Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC et al (2000) Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J 14:418–429

    PubMed  CAS  Google Scholar 

  104. Petheö GL, Demaurex N (2005) Voltage- and NADPH dependence of electron currents generated by the phagocytic NADPH. Biochem J 388:485–491 doi:10.1042/BJ20041889

    Article  PubMed  CAS  Google Scholar 

  105. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J et al (1995) Mouse model of X-linked chronic granulomatous disease: an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209 doi:10.1038/ng0295-202

    Article  PubMed  CAS  Google Scholar 

  106. Rada BK, Geiszt M, Hably C, Ligeti E (2005) Consequences of the electrogenic function of the phagocytic NADPH oxidase. Philos Trans R Soc Lond B Biol Sci 360:2293–2300 doi:10.1098/rstb.2005.1768

    Article  PubMed  CAS  Google Scholar 

  107. Rada BK, Geiszt M, Káldi K, Timár C, Ligeti E (2004) Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 104:2947–2953 doi:10.1182/blood-2004-03-1005

    Article  PubMed  CAS  Google Scholar 

  108. Rada BK, Geiszt M, Van Bruggen R, Nemet K, Roos D, Ligeti E (2003) Calcium signalling is altered in myeloid cells with a deficiency in NADPH oxidase activity. Clin Exp Immunol 132:53–60 doi:10.1046/j.1365-2249.2003.02138.x

    Article  PubMed  CAS  Google Scholar 

  109. Ramsey IS, Moran MM, Chong JA, Clapham DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216 doi:10.1038/nature04700

    Article  PubMed  CAS  Google Scholar 

  110. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297 doi:10.1038/416291a

    Article  PubMed  CAS  Google Scholar 

  111. Reeves EP, Nagl M, Godovac-Zimmermann J, Segal AW (2003) Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J Med Microbiol 52:643–651 doi:10.1099/jmm.0.05181-0

    Article  PubMed  CAS  Google Scholar 

  112. Ricevuti G (1997) Host tissue damage by phagocytes. Ann NY Acad Sci 832:426–448 doi:10.1111/j.1749-6632.1997.tb46269.x

    Article  PubMed  CAS  Google Scholar 

  113. Roos D, Voetman AA, Meerhof LJ (1983) Functional activity of enucleated human polymorphonuclear leukocytes. J Cell Biol 97:368–377 doi:10.1083/jcb.97.2.368

    Article  PubMed  CAS  Google Scholar 

  114. Rosen H, Klebanoff SJ (1979) Bactericidal activity of a superoxide-generating system. A model for the polymorphonuclear system. J Exp Med 149:27–39 doi:10.1084/jem.149.1.27

    Article  PubMed  CAS  Google Scholar 

  115. Rosen H, Klebanoff SJ (1977) Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system. J Biol Chem 252:4803–4810

    PubMed  CAS  Google Scholar 

  116. Sanford AN, Suriano AR, Herche D, Dietzmann K, Sullivan KE (2006) Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology 45:178–181 doi:10.1093/rheumatology/kei135

    Article  PubMed  CAS  Google Scholar 

  117. Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312:589–592 doi:10.1126/science.1122352

    Article  PubMed  CAS  Google Scholar 

  118. Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14:393–400 doi:10.1021/ar00072a005

    Article  CAS  Google Scholar 

  119. Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, Assi LK et al (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104:2557–2564 doi:10.1182/blood-2004-01-0191

    Article  PubMed  CAS  Google Scholar 

  120. Schrenzel J, Serrander L, Bánfi B, Nüsse O, Fouyouzi R, Lew DP et al (1998) Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–737 doi:10.1038/33725

    Article  PubMed  CAS  Google Scholar 

  121. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223 doi:10.1146/annurev.immunol.23.021704.115653

    Article  PubMed  CAS  Google Scholar 

  122. Segal AW, Geisow M, Garcia R, Harper A, Miller R (1981) The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290:406–409 doi:10.1038/290406a0

    Article  PubMed  CAS  Google Scholar 

  123. Segal AW (2008) The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol 40:604–618

    Article  PubMed  CAS  Google Scholar 

  124. Seligmann C, Bock A, Leitsch T, Schimmer M, Simsek Y, Schultheiss HP (2001) Polymorphonuclear granulocytes induce myocardial dysfunction during ischemia and in later reperfusion of hearts exposed to low-flow ischemia. J Leukoc Biol 69:727–731

    PubMed  CAS  Google Scholar 

  125. Shimizu Y, Daniels RH, Elmore MA, Finnen MJ, Hill ME, Lackie JM (1993) Agonist-stimulated Cl− efflux from human neutrophils. A common phenomenon during neutrophil activation. Biochem Pharmacol 45:1743–1751 doi:10.1016/0006-2952(93)90429-Z

    Article  PubMed  CAS  Google Scholar 

  126. Simchowitz L, Spilberg I, De Weer P (1982) Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump. J Gen Physiol 79:453–479 doi:10.1085/jgp.79.3.453

    Article  PubMed  CAS  Google Scholar 

  127. Stasia MJ, Li XJ (2008) Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol (in press), (in this volume)

  128. Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 110:1151–1163

    PubMed  CAS  Google Scholar 

  129. Steinbeck MJ, Khan AU, Karnovsky MJ (1992) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem 267:13425–13433

    PubMed  CAS  Google Scholar 

  130. Tare M, Prestwich SA, Gordienko DV, Parveen S, Carver JE, Robinson C et al (1998) Inwardly rectifying whole cell potassium current in human blood eosinophils. J Physiol 506:303–318 doi:10.1111/j.1469-7793.1998.303bw.x

    Article  PubMed  CAS  Google Scholar 

  131. Tintinger GR, Theron AJ, Steel HC, Andersen R (2001) Accelerated calcium influx and hyperactivation of neutrophils in chronic granulomatous disease. Clin Exp Immunol 123:254–263 doi:10.1046/j.1365-2249.2001.01447.x

    Article  PubMed  CAS  Google Scholar 

  132. Urban CF, Reichard U, Brinkmann V, Zychlinksy A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8:668–676 doi:10.1111/j.1462-5822.2005.00659.x

    Article  PubMed  CAS  Google Scholar 

  133. Urban C, Zychlinsky A (2007) Netting bacteria in sepsis. Nat Med 13:403–404 doi:10.1038/nm0407-403

    Article  PubMed  CAS  Google Scholar 

  134. Várnai P, Demaurex N, Jaconi M, Schlegel W, Lew DP, Krause KH (1993) Highly co-operative Ca2+ activation of intermediate-conductance K+ channels in granulocytes from a human cell line.. J Physiol 472:373–390

    PubMed  Google Scholar 

  135. Vinciguerra M, Hasler U, Mordasini D, Roussel M, Capovilla M, Ogier-Denis E et al (2005) Cytokines and sodium induce protein kinase A-dependent cell-surface Na,K-ATPase recruitment via dissociation of NF-kappaB/IkappaB/protein kinase A catalytic subunit complex in collecting duct principal cells. J Am Soc Nephrol 16:2576–2585 doi:10.1681/ASN.2005040448

    Article  PubMed  CAS  Google Scholar 

  136. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC et al (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    PubMed  CAS  Google Scholar 

  137. Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T et al (2002) Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298:2195–2199 doi:10.1126/science.1077642

    Article  PubMed  CAS  Google Scholar 

  138. Wheeler MA, Smith SD, García-Cardeña G, Nathan CF, Weiss RM, Sessa WC (1997) Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 99:110–116 doi:10.1172/JCI119121

    Article  PubMed  CAS  Google Scholar 

  139. Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150 doi:10.1073/pnas.0937239100

    Article  PubMed  CAS  Google Scholar 

  140. Zhang B, Hirahashi J, Cullere X, Mayadas TN (2003) Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem 278:28443–28454 doi:10.1074/jbc.M210727200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor Thomas E. DeCoursey for valueable suggestions and critical reading of the manuscript. Experimental work carried out in the laboratory of L.E. has been supported by the Hungarian Research Fund (grants no. 62221 and 49851) and from the Hungarian Ministry of Health (grant no. 181/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzsébet Ligeti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rada, B., Hably, C., Meczner, A. et al. Role of Nox2 in elimination of microorganisms. Semin Immunopathol 30, 237–253 (2008). https://doi.org/10.1007/s00281-008-0126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0126-3

Keywords

Navigation