Skip to main content
Log in

Hydrogen peroxide mediated killing of bacteria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Polymorphonuclear leukocytes (PMN) or neutrophils have multiple systems available for killing ingested bacteria. Nearly each of these incorporates H2O2 indicating the essential nature of this reactive oxygen intermediate for microbicidal activity. Following ingestion of bacteria by PMN, H2O2 is formed by the respiratory burst which consumes O2 and generates H2O2 from O2−. H2O2 is deposited intracellularly near bacteria within phagocytic vacuoles where it can react with the MPO-H2O2-halide system to form toxic hyperchlorous acid (HOCl) and/or possibly singlet oxygen (1O2). H2O2 can also react with O2− and/or iron (Fe++) from lactoferrin or bacteria to form the highly toxic hydroxyl radical (1OH). These mechanisms appear important since deficiencies of H2O2 production, myeloperoxidase or lactoferrin frequently increases their owner's susceptibility to infection. In particular, examination of PMN from infection prone patients with chronic granulomatous disease (CGD) most clearly demonstrates the importance of H2O2 in killing of bacteria. CGD PMN lack the capacity to effectively generate H2O2 and subsequently have impaired ability to kill catalase positive (H2O2 producing) but not catalase negative (not H2O2 producing) bacteria. PMN also have catalase and glutathione peroxidase systems in their cytoplasms to protect themselves from the toxicity of H2O2. Finally, while H2O2 is critical for host defense, it can also be released extracellularly and thereby play a significant role in PMN mediated tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keller, H. U., Hess, M. W. and Cottier, H., 1975. Semin. Hematol. 12: 47–57.

    Google Scholar 

  2. Zigmond, S. H., 1974. Nature 249: 450–452.

    Google Scholar 

  3. Stossel, T. P., 1975. Semin. Hematol. 12: 83–116.

    Google Scholar 

  4. Zucker-Franklin, D., 1964. J. Exp. Med. 120: 569–576.

    Google Scholar 

  5. Karnovsky, M. L., 1968. Semin. Hematol. 5: 156–165.

    Google Scholar 

  6. Repine, J. E., White, J. G., Clawson, C. C. et al., 1974. J. Clin. Invest. 54: 83–90.

    Google Scholar 

  7. Baldridge, C. W. and Gerard, R. W., 1933. Am. J. Physiol. 103: 235–235.

    Google Scholar 

  8. Iyer, G. Y. N., Islam, M. F. and Quastel, J. H., 1961. Nature 192: 535–541.

    CAS  Google Scholar 

  9. Sbarra, A. J. and Karnovsky, M. L., 1959. J. Biol. Chem. 234: 1355–1362.

    Google Scholar 

  10. Root, R. K. and Metcalf, J. A., 1977. J. Clin. Invest. 60: 1266–1279.

    Google Scholar 

  11. Root, R. K., Metcalf, J. A., Oshino, N. et al., 1975. J. Clin. Invest. 55: 945–955.

    Google Scholar 

  12. Goldstein, I. M., Cerquiera, M., Lind, S. et al., 1977. J. Clin. Invest. 59: 249–254.

    Google Scholar 

  13. Babior, B. M., Kipnes, R. S. and Curnutte, J. T., 1973. J. Clin. Invest. 52: 741–744.

    Google Scholar 

  14. Drath, D. B. and Karnovsky, M. L., 1975. J. Exp. Med. 141: 257–262.

    Google Scholar 

  15. McCord, J. M. and Fridovich, I., 1969. J. Biol. Chem. 244: 6049–6055.

    Google Scholar 

  16. Babior, B. M., Curnutte, J. T. and McMurrich, B. J., 1976. J. Clin. Invest. 58: 989–996.

    Google Scholar 

  17. Klebanoff, S. J., 1968. J. Bacteriol. 95: 2131–2138.

    Google Scholar 

  18. Klebanoff, S. J., 1967. J. Exp. Med. 126: 1063–1078.

    Google Scholar 

  19. McRipley, R. J. and Sbarra, A. J., 1967. J. Bacteriol. 94: 1425–1430.

    Google Scholar 

  20. Quie, P. G., White, J. G., Holmes, B. and Good, R. A., 1967. J. Clin. Invest. 46: 668–679.

    Google Scholar 

  21. Mandell, G. L. and Hook, E. W., 1969. J. Bacteriol. 100: 531–532.

    Google Scholar 

  22. Kaplan, E. L., Laxdal, T. and Quie, P. G., 1968. Pediatrics 41: 591–599.

    Google Scholar 

  23. Baehner, R. L., Nathan, D. G. and Karnovsky, M. L., 1970. J. Clin. Invest. 49: 865–870.

    Google Scholar 

  24. Johnston, R. B. Jr. and Baehner, R. L., 1970. Blood. 35: 350–355.

    Google Scholar 

  25. Root, R. K. Clin. Res. 22: 452A.

  26. Klebanoff, S. J., 1967. J. Clin. Invest. 46: 1078.

    Google Scholar 

  27. Klebanoff, S. J. and Rosen, H., 1979. In: Oxygen Free Radicals and Tissue Damage. Excerpta Medica, Oxford, New York.

    Google Scholar 

  28. Bainton, D. F. and Farquhar, M. G., 1968. J. Cell. Biol. 39: 299–317.

    Google Scholar 

  29. Lehrer, R. I. and Cline, M. J., 1969. J. Clin. Invest. 48: 1478–1488.

    Google Scholar 

  30. Lehrer, R. I., Hanifen, J. and Cline, M. J., 1969. Nature 223: 78–79.

    Google Scholar 

  31. Klebanoff, S. J., 1970. Science 169: 1095–1097.

    CAS  PubMed  Google Scholar 

  32. Rosen, H. and Klebanoff, S. J., 1977. J. Biol. Chem. 252: 4803–4810.

    Google Scholar 

  33. Allen, R. C., Stjernholm, R. L. and Steele, R. H., 1972. Biochem. Biophys. Res. Commun. 47: 679–684.

    Google Scholar 

  34. Kearns, D. R., 1971. Chem. Rev. 71: 395–427.

    Google Scholar 

  35. Cheson, B. D., Christensen, R. L., Sperling, R. et al., 1976. J. Clin. Invest. 58: 789–796.

    Google Scholar 

  36. Anderson, B. R., Brendzel, A. M. and Lint, T. F., 1977. Infect. Immun. 17: 62–66.

    Google Scholar 

  37. Rosen, H. and Klebanoff, S. J., 1976. J. Clin. Invest. 58: 50–60.

    Google Scholar 

  38. Piatt, J. F., Cheema, A. S. and O'Brien, P. J., 1977. FEBS Letters 74: 251–254.

    Google Scholar 

  39. Krinksy, N. I., 1974. Science 186: 363–365.

    Google Scholar 

  40. Khan, A., 1970. Science 168: 476–477.

    Google Scholar 

  41. Khan, A., 1977. J. Am. Chem. Sec. 99: 370–371.

    Google Scholar 

  42. Kellogg, E. W., Tert, R. S. and Fridovich, I., 1975. J. Biol. Chem. 250: 8812–8817.

    Google Scholar 

  43. Krinksy, N. I., 1979. In: Singlet Oxygen. N.Y. Acad. Press.

  44. Babior, B. M., 1978. J. Engl. J. Med. 298: 659–668.

    Google Scholar 

  45. Haber, F. and Willstatter, R., 1931. Berichte 64: 2844–2856.

    Google Scholar 

  46. Haber, F. and Weiss, J., 1932. Naturwissenschaften 20: 948–950.

    Google Scholar 

  47. Fridovich, I., 1970. J. Biol. Chem. 245: 4053–4057.

    Google Scholar 

  48. Gregory, E. M. and Fridovich, I.. 1974. J. Bacteriol. 117: 166–169.

    Google Scholar 

  49. Webb, L. S., Keele, B. B. Jr. and Johnston, R. B. Jr., 1974. Infect. Immun. 9: 1051–1056.

    Google Scholar 

  50. Beauchamp, C. and Fridovich, I., 1970. J. Biol. Chem. 245: 4641–4646.

    Google Scholar 

  51. Repine, J. E., Eaton, J. A., Anders, M. W. et al., 1979. J. Clin. Invest. 64: 1642–1651.

    Google Scholar 

  52. Fenton, H. J. H., 1893. J. Chem. Soc. 64: 899–904.

    Google Scholar 

  53. Fee, J. A. and Valentine, J. S., 1977. In: Superoxide and Superoxide Dismutases. London & N.Y. Acad. Press. pp. 19–60.

  54. Fee, J. A., 1980. In: Metal Ion Activation of Dioxygen. J. Wiley & Sons, Inc. pp. 209–237.

  55. Halliwell, B., 1976. Fed. Eur. Biochem. Soc. Lett. 72: 8–10.

    Google Scholar 

  56. McCord, J. M. and Day, E. D. Jr., 1978. Fed. Eur. Biochem. Soc. Lett. 86: 139–142.

    Google Scholar 

  57. Repine, J. E., Fox, R. B., Berger, E. M. and Harada, R. N., 1981. Infect. Immun. 32: 407–410.

    Google Scholar 

  58. Repine, J. E., Fox, R. B. and Berger, E. M., 1981. J. Biol. Chem. 256: 7094–7097.

    Google Scholar 

  59. Arnold, R. R., Brewer, M. and Gauthier, J. J., 1980. Infect. Immun. 28 (3): 893–898.

    Google Scholar 

  60. Breton-Gorius, J., Mason, D. Y., Buriot, D. et al., 1980. Am. J. Path. 99 (2): 413–428.

    Google Scholar 

  61. Weening, R. S., Roos, D., Van Schaik, M., Voetman, A. A., DeBoer, M. and Loos, J. A., 1977. In: Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, Piccin Medical Books, Padua, pp. 277–283.

    Google Scholar 

  62. Holmes, B., Park, B. H., Malawista, S. E., Quie, P. G., Nelson, D. L. and Good, R. A., 1970. N. Engl. J. Med. 283: 217–221.

    Google Scholar 

  63. Shasby, D. M., Van Benthuysen, K. M., Tate, R. M. et al., 1982. Amer. Rev. Resp. Dis. 125: 443–447.

    Google Scholar 

  64. Tate, R. M., Van Benthuysen, K. M., Shasby, D. M. et al., 1982. Amer. Rev. Resp. Dis. (in press).

  65. Nathan, C. F. and Cohn, Z. A., 1981. J. Exp. Med. 154: 1539–1553.

    Google Scholar 

  66. De Filippi, L. J., Ballou, D. P. and Hultquist, D. E., 1979. J. Biol. Chem. 254: 6917–6923.

    Google Scholar 

  67. Hoffmann, M. E. and Meneghini, R., 1979. Photochem. and Photobiol. 30: 151–155.

    Google Scholar 

  68. Hoffmann, M. E. and Meneghini, R., 1979. Photochem. and Photobiol. 29: 299–303.

    Google Scholar 

  69. Nathan, C. F., Silverstein, S. C., Builner, L. H. et al., 1979. J. Exp. Med. 149: 100–113.

    Google Scholar 

  70. Clark, R. A. and Klebanoff, S. J., 1980. J. Immunol. 124: 399–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clifford, D.P., Repine, J.E. Hydrogen peroxide mediated killing of bacteria. Mol Cell Biochem 49, 143–149 (1982). https://doi.org/10.1007/BF00231175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231175

Keywords

Navigation