Skip to main content
Log in

Quantitative relationship between pharmacokinetics of unchanged cisplatin and nephrotoxicity in rats: importance of area under the concentration-time curve (AUC) as the major toxicodynamic determinant in vivo

  • ORIGINAL ARTICLE
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: The major pharmacokinetic parameters of unchanged cisplatin (CDDP) related to nephrotoxicity were evaluated in rats in vivo using a pharmacodynamic model. Methods: CDDP was administered according to various dosing schedules (single bolus, intermittent bolus, or continuous infusion). Unchanged CDDP in plasma and urine was quantified using high-performance liquid chromatography (HPLC). The pharmacokinetics were assessed by model-independent methods. The relationship between pharmacokinetics and BUN levels was evaluated using a sigmoid maximum response (Emax) model. Results: Unchanged CDDP showed linear pharmacokinetics after single bolus injections of 1 to 5 mg/kg CDDP. Nephrotoxicity was ameliorated following intermittent bolus injection (1 mg/kg per day for 5 days) and continuous infusions (over 2 and 3 h) of the same CDDP doses (5 mg/kg), although these dosing schedules did not change the area under the concentration-time curve (AUC), total clearance (Clt), urinary excretion of unchanged CDDP or kidney platinum levels significantly. The maximum BUN level, as a nephrotoxicity marker, showed dose-related increases after single bolus injection of 1 to 5 mg/kg CDDP and after 3-h infusion of 5 to 25 mg/kg. The pharmacodynamic relationship between the maximum BUN level and Cmax and between the maximum BUN level and AUC were apparently different between single bolus injection and 3-h infusion. The maximum BUN level was related to the AUC calculated by plasma concentrations of unchanged CDDP greater than the threshold level (AUC>Cmin), a relationship most successfully described by the signoid Emax model, regardless of CDDP dose and schedule. The plasma threshold level of unchanged CDDP was determined as 0.9 μgPt/ml in rats. Conclusions: The present results substantiated the importance of C×T (AUC) value as an indicator of CDDP-induced nephrotoxicity in vivo as well as of tumor cell-killing effect of CDDP in vitro. The AUC>Cmin of unchanged CDDP was found to be an important pharmacokinetic parameter predicting CDDP nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 12 February 1996 / Accepted: 5 September 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, N., Ogata, H. Quantitative relationship between pharmacokinetics of unchanged cisplatin and nephrotoxicity in rats: importance of area under the concentration-time curve (AUC) as the major toxicodynamic determinant in vivo. Cancer Chemother Pharmacol 40, 11–18 (1997). https://doi.org/10.1007/s002800050618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002800050618

Navigation