Skip to main content
Log in

Evaluation of the pharmacokinetic drug-drug interaction potential of iohexol, a renal filtration marker

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Carboplatin dose is calculated based on kidney function, commonly estimated with imperfect creatinine-based formulae. Iohexol is used to measure glomerular filtration rate (GFR) and allows calculation of a more appropriate carboplatin dose. To address potential concerns that iohexol administered during a course of chemotherapy impacts that therapy, we performed in vitro and in vivo pharmacokinetic drug-drug interaction evaluations of iohexol.

Methods

Carboplatin was administered IV to female mice at 60 mg/kg with or without iohexol at 300 mg/kg. Plasma ultrafiltrate, kidney and bone marrow platinum was quantitated by atomic absorption spectrophotometry. Paclitaxel microsomal and gemcitabine cytosolic metabolism as well as metabolism of CYP and UGT probes was assessed with and without iohexol at 300 µg/mL by LC–MS/MS.

Results

In vivo carboplatin exposure was not significantly affected by iohexol co-administration (platinum AUC combination vs alone: plasma ultrafiltrate 1,791 vs 1920 µg/mL min; kidney 8367 vs 9757 µg/g min; bone marrow 12.7 vs 12.7 µg/mg-protein min). Paclitaxel microsomal metabolism was not impacted (combination vs alone: 6-α-OH-paclitaxel 38.3 versus 39.4 ng/mL/60 min; 3-p-OH-paclitaxel 26.2 versus 27.7 ng/mL/60 min). Gemcitabine human cytosolic elimination was not impacted (AUC combination vs gemcitabine alone: dFdU 24.1 versus 23.7 µg/mL/30 min). Iohexol displayed no relevant inhibition of the CYP and UGT enzymes in human liver microsomes.

Conclusions

Iohexol is unlikely to affect the clinical pharmacokinetics of carboplatin, paclitaxel, gemcitabine, or other agents used in combination with carboplatin treatment. Measuring GFR with iohexol to better dose carboplatin is unlikely to alter the safety or efficacy of chemotherapy through pharmacokinetic drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jodrell DI, Egorin MJ, Canetta RM, Langenberg P, Goldbloom EP, Burroughs JN, Goodlow JL, Tan S, Wiltshaw E (1992) Relationships between carboplatin exposure and tumor response and toxicity in patients with ovarian cancer. J Clin Oncol 10(4):520–528

    PubMed  CAS  Google Scholar 

  2. Bristol-Myers Squibb Company (2010) Package Insert—PARAPLATIN® (carboplatin) for Injection, USP

  3. Calvert AH, Newell DR, Gumbrell LA, O'Reilly S, Burnell M, Boxall FE, Siddik ZH, Judson IR, Gore ME, Wiltshaw E (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7(11):1748–1756. https://doi.org/10.1200/JCO.1989.7.11.1748

    Article  PubMed  CAS  Google Scholar 

  4. Casal MA, Nolin TD, Beumer JH (2019) Estimation of kidney function in oncology. Clin J Am Soc Nephrol. https://doi.org/10.2215/cjn.11721018

    Article  PubMed  PubMed Central  Google Scholar 

  5. Levey AS, Inker LA, Coresh J (2014) GFR estimation: from physiology to public health. Am J Kidney Dis 63(5):820–834. https://doi.org/10.1053/j.ajkd.2013.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    PubMed  CAS  Google Scholar 

  7. Winter MA, Guhr KN, Berg GM (2012) Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gault equation. Pharmacotherapy 32(7):604–612. https://doi.org/10.1002/j.1875-9114.2012.01098.x

    Article  PubMed  CAS  Google Scholar 

  8. Preiss DJ, Godber IM, Lamb EJ, Dalton RN, Gunn IR (2007) The influence of a cooked-meat meal on estimated glomerular filtration rate. Ann Clin Biochem 44(Pt 1):35–42. https://doi.org/10.1258/000456307779595995

    Article  PubMed  CAS  Google Scholar 

  9. Andreev E, Koopman M, Arisz L (1999) A rise in plasma creatinine that is not a sign of renal failure: which drugs can be responsible? J Intern Med 246(3):247–252

    PubMed  CAS  Google Scholar 

  10. Levey AS, Perrone RD, Madias NE (1988) Serum creatinine and renal function. Annu Rev Med 39:465–490. https://doi.org/10.1146/annurev.me.39.020188.002341

    Article  PubMed  CAS  Google Scholar 

  11. Lawson J, Switchenko JM, McKibbin T, Donald Harvey R (2016) Impact of isotope dilution mass spectrometry (IDMS) standardization on carboplatin dose and adverse events. Pharmacotherapy 36(6):617–622. https://doi.org/10.1002/phar.1759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fehr M, Maranta AF, Reichegger H, Gillessen S, Cathomas R (2018) Carboplatin dose based on actual renal function: no excess of acute haematotoxicity in adjuvant treatment in seminoma stage I. ESMO Open 3(3):e000320. https://doi.org/10.1136/esmoopen-2018-000320

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wesson L (1969) Physiology of the human kidney. Grune & Stratton, New York, NY

    Google Scholar 

  14. Appleman LJ, Beumer JH, Jiang Y, Lin Y, Ding F, Puhalla S, Swartz L, Owonikoko TK, Donald Harvey R, Stoller R, Petro DP, Tawbi HA, Argiris A, Strychor S, Pouquet M, Kiesel B, Chen AP, Gandara D, Belani CP, Chu E, Ramalingam SS (2019) Phase 1 study of veliparib (ABT-888), a poly (ADP-ribose) polymerase inhibitor, with carboplatin and paclitaxel in advanced solid malignancies. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-019-03960-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beumer JH, Inker LA, Levey AS (2018) Improving carboplatin dosing based on estimated GFR. Am J Kidney Dis 71(2):163–165. https://doi.org/10.1053/j.ajkd.2017.10.005

    Article  PubMed  Google Scholar 

  16. Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, Bjork J, Christensson A, Nyman U, Porrini E, Remuzzi G, Ruggenenti P, Schaeffner E, Soveri I, Sterner G, Eriksen BO, Back SE (2016) Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin Kidney J 9(5):682–699. https://doi.org/10.1093/ckj/sfw070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Olsson B, Aulie A, Sveen K, Andrew E (1983) Human pharmacokinetics of iohexol. A new nonionic contrast medium. Invest Radiol 18(2):177–182

    PubMed  CAS  Google Scholar 

  18. Aakhus T, Sommerfelt SC, Stormorken H, Dahlstrom K (1980) Tolerance and excretion of iohexol after intravenous injection in healthy volunteers. Preliminary report. Acta Radiol Suppl 362:131–134

    PubMed  CAS  Google Scholar 

  19. Kearns CM, Gianni L, Egorin MJ (1995) Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol 22(3 Suppl 6):16–23

    PubMed  CAS  Google Scholar 

  20. Cresteil T, Monsarrat B, Alvinerie P, Treluyer JM, Vieira I, Wright M (1994) Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Can Res 54(2):386–392

    CAS  Google Scholar 

  21. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW (1994) Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Can Res 54(21):5543–5546

    CAS  Google Scholar 

  22. Beumer JH, Eiseman JL, Gilbert JA, Holleran JL, Yellow-Duke AE, Clausen DM, D'Argenio DZ, Ames MM, Hershberger PA, Parise RA, Bai L, Covey JM, Egorin MJ (2011) Plasma pharmacokinetics and oral bioavailability of the 3,4,5,6-tetrahydrouridine (THU) prodrug, triacetyl-THU (taTHU), in mice. Cancer Chemother Pharmacol 67(2):421–430. https://doi.org/10.1007/s00280-010-1337-6

    Article  PubMed  CAS  Google Scholar 

  23. Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G (1995) Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 6(2):257–263

    PubMed  CAS  Google Scholar 

  24. Kiesel BF, Parise RA, Guo J, Huryn DM, Johnston PA, Colombo R, Sen M, Grandis JR, Beumer JH, Eiseman JL (2016) Toxicity, pharmacokinetics and metabolism of a novel inhibitor of IL-6-induced STAT3 activation. Cancer Chemother Pharmacol 78(6):1225–1235. https://doi.org/10.1007/s00280-016-3181-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Desai PB, Duan JZ, Zhu YW, Kouzi S (1998) Human liver microsomal metabolism of paclitaxel and drug interactions. Eur J Drug Metab Pharmacokinet 23(3):417–424

    PubMed  CAS  Google Scholar 

  26. Lee B, Ji HK, Lee T, Liu KH (2015) Simultaneous screening of activities of five cytochrome P450 and four uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using cocktail incubation and liquid chromatography-tandem mass spectrometry. Drug Metab Dispos. https://doi.org/10.1124/dmd.114.063016

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holleran JL, Parise RA, Guo J, Kiesel BF, Taylor SE, Ivy SP, Chu E, Beumer JH (2020) Quantitation of iohexol, a glomerular filtration marker, in human plasma by LC-MS/MS. J Pharm Biomed Anal 189:113464. https://doi.org/10.1016/j.jpba.2020.113464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Christner SM, Parise RA, Ivy PS, Tawbi H, Chu E, Beumer JH (2019) Quantitation of paclitaxel, and its 6-alpha-OH and 3-para-OH metabolites in human plasma by LC-MS/MS. J Pharm Biomed Anal 172:26–32. https://doi.org/10.1016/j.jpba.2019.04.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stoller R, Schmitz JC, Ding F, Puhalla S, Belani CP, Appleman L, Lin Y, Jiang Y, Almokadem S, Petro D, Holleran J, Kiesel BF, Ken Czambel R, Carneiro BA, Kontopodis E, Hershberger PA, Rachid M, Chen A, Chu E, Beumer JH (2017) Phase I study of veliparib in combination with gemcitabine. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-017-3409-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pillai VC, Strom SC, Caritis SN, Venkataramanan R (2013) A sensitive and specific CYP cocktail assay for the simultaneous assessment of human cytochrome P450 activities in primary cultures of human hepatocytes using LC-MS/MS. J Pharm Biomed Anal 74:126–132. https://doi.org/10.1016/j.jpba.2012.10.016

    Article  PubMed  CAS  Google Scholar 

  31. Bailer AJ (1988) Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 16(3):303–309

    PubMed  CAS  Google Scholar 

  32. Beumer JH, Franke NE, Tolboom R, Buckle T, Rosing H, Lopez-Lazaro L, Schellens JH, Beijnen JH, van Tellingen O (2010) Disposition and toxicity of trabectedin (ET-743) in wild-type and mdr1 gene (P-gp) knock-out mice. Invest New Drugs 28(2):145–155. https://doi.org/10.1007/s10637-009-9234-8

    Article  PubMed  CAS  Google Scholar 

  33. General Electric Company (2015) Package Insert—OMNIPAQUE™ (iohexol) Injection

  34. Grimm SW, Einolf HJ, Hall SD, He K, Lim HK, Ling KH, Lu C, Nomeir AA, Seibert E, Skordos KW, Tonn GR, Van Horn R, Wang RW, Wong YN, Yang TJ, Obach RS (2009) The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: a perspective of the pharmaceutical research and manufacturers of America. Drug Metab Dispos 37(7):1355–1370. https://doi.org/10.1124/dmd.109.026716

    Article  PubMed  CAS  Google Scholar 

  35. Durbin PW, Jeung N, Kullgren B, Clemons GK (1992) Gross composition and plasma and extracellular water volumes of tissues of a reference mouse. Health Phys 63(4):427–442. https://doi.org/10.1097/00004032-199210000-00007

    Article  PubMed  CAS  Google Scholar 

  36. Qi Z, Breyer MD (2009) Measurement of glomerular filtration rate in conscious mice. Methods Mol Biol 466:61–72. https://doi.org/10.1007/978-1-59745-352-3_5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants UM1 CA186690, U24CA247643, and R50 CA211241. This project used the UPMC Hillman Cancer Pharmacokinetics and Pharmacodynamics Facility (CPPF) and Animal Facility (AF) and was supported in part by award P30 CA47904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan H. Beumer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Guo, J., Holleran, J.L. et al. Evaluation of the pharmacokinetic drug-drug interaction potential of iohexol, a renal filtration marker. Cancer Chemother Pharmacol 86, 535–545 (2020). https://doi.org/10.1007/s00280-020-04145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04145-6

Keywords

Navigation