Skip to main content

Advertisement

Log in

Clinical results of the EVESOR trial, a multiparameter phase I trial of everolimus and sorafenib combination in solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Everolimus (EVE) and sorafenib (SOR) combination was associated with synergistic activity in preclinical models. However, previous clinical studies were hampered by cumulative toxicities when both were given continuously. The academic EVESOR trial (NCT01932177) was designed to assess alternative doses and intermittent dosing schedules of EVE and SOR combination therapy to improve the benefit-risk ratio for patients with solid tumors.

Methods

EVESOR is a multiparameter dose-escalation phase I trial investigating different doses and dosing schedules, with the final objective of generating data for modeling and simulation. Patients were allocated into continuous (A and B) or intermittent (C and D) schedules to determine the recommended phase II dose (RP2D). The clinical outcomes are presented here.

Results

Forty-three patients were included from 2013 to 2019. Most of them had gynecological (25.6%), cholangiocarcinomas (23.2%), colorectal (14.0%), and breast cancers (11.6%). Dose-escalation up to EVE 10 mg QD and SOR 400 mg BID was possible on intermittent schedules. Five dose-limiting toxicities were observed, and dose reductions were required in 39.5% patients, stabilizing at EVE 5 mg and SOR 200 mg BID for 58.1% of them. The overall response rate was 6.3%, and disease control rate was 75.0%. The median progression-free survival (PFS) was 3.6 months. The longest median PFS were observed in cholangiocarcinomas (9.9 months), and gynecological adenocarcinomas (9.2 months).

Conclusion

Intermittent arms were associated with improved efficacy/toxicity profiles; and EVE 5 mg QD and SOR 200 mg BID was defined a clinically feasible dose. Strong signs of efficacy were found in cholangiocarcinomas and gynecologic carcinomas.

Trial registration

ClinicalTrials.gov Identifier: NCT01932177.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bedard PL, Hyman DM, Davids MS, Siu LL (2020) Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395:1078–1088. https://doi.org/10.1016/S0140-6736(20)30164-1

    Article  CAS  PubMed  Google Scholar 

  2. Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baselga J, Cortés J, Kim S-B et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119. https://doi.org/10.1056/NEJMoa1113216

    Article  CAS  PubMed  Google Scholar 

  4. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choueiri TK, Escudier B, Powles T et al (2015) Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Eng J Med 373:1814–1823

    Article  CAS  Google Scholar 

  6. Chappell WH, Steelman LS, Long JM et al (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2:135–164

    Article  PubMed  PubMed Central  Google Scholar 

  7. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28:1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mordant P, Loriot Y, Leteur C et al (2010) Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (everolimus) in combination. Mol Cancer Ther 9:358–368. https://doi.org/10.1158/1535-7163.MCT-09-1014

    Article  CAS  PubMed  Google Scholar 

  9. Piguet A-C, Saar B, Hlushchuk R et al (2011) Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther 10:1007–1017

    Article  CAS  PubMed  Google Scholar 

  10. Pignochino Y, Dell’Aglio C, Basiricò M et al (2013) The combination of sorafenib and everolimus abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res 19:2117–2131

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Samsel PA, Narov K et al (2017) Combination of everolimus with sorafenib for solid renal tumors in Tsc2+/− mice is superior to everolimus alone. Neoplasia 19:112–120

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529

    Article  CAS  PubMed  Google Scholar 

  13. Yao JC, Fazio N, Singh S et al (2016) Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387:968–977

    Article  CAS  PubMed  Google Scholar 

  14. Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    Article  CAS  PubMed  Google Scholar 

  15. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  CAS  PubMed  Google Scholar 

  16. Escudier B, Eisen T, Stadler WM et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. JCO 27:3312–3318

    Article  CAS  Google Scholar 

  17. Brose MS, Nutting CM, Jarzab B et al (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brose MS, Troxel AB, Yarchoan M et al (2015) A phase II study of everolimus (E) and sorafenib (S) in patients (PTS) with metastatic differentiated thyroid cancer who have progressed on sorafenib alone. JCO 33:6072–6072

    Article  Google Scholar 

  19. Cen P, Daleiden A, Doshi G, Amato R (2009) A phase I study of everolimus plus sorafenib in patients with metastatic renal cell carcinoma (mRCC). JCO 27:e16056–e16056. https://doi.org/10.1200/jco.2009.27.15_suppl.e16056

    Article  Google Scholar 

  20. Amato RJ, Flaherty AL, Stepankiw M (2012) Phase I trial of everolimus plus sorafenib for patients with advanced renal cell cancer. Clin Genitourin Cancer 10:26–31

    Article  PubMed  Google Scholar 

  21. Chan JA, Mayer RJ, Jackson N et al (2013) Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother Pharmacol 71:1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Simone P, Crocetti L, Pezzati D et al (2014) Efficacy and safety of combination therapy with everolimus and sorafenib for recurrence of hepatocellular carcinoma after liver transplantation. Transplant Proc 46:241–244

    Article  PubMed  Google Scholar 

  23. Finn RS, Poon RTP, Yau T et al (2011) Phase I study of everolimus in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC). JCO 29:4074–4074

    Article  Google Scholar 

  24. Finn RS, Poon RTP, Yau T et al (2013) Phase I study investigating everolimus combined with sorafenib in patients with advanced hepatocellular carcinoma. J Hepatol 59:1271–1277

    Article  CAS  PubMed  Google Scholar 

  25. Giessinger S, Amato RJ, Jac J et al (2008) A phase I study with a daily regimen of the oral mTOR inhibitor RAD001 (Everolimus) plus sorafenib for patients with metastatic renal cell cancer (MRCC). JCO 26:14603–14603

    Article  Google Scholar 

  26. Grignani G, Palmerini E, Ferraresi V et al (2015) Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol 16:98–107

    Article  CAS  PubMed  Google Scholar 

  27. Hainsworth JD, Waterhouse DM, Penley WC et al (2013) Sorafenib and everolimus in advanced clear cell renal carcinoma: a phase I/II trial of the SCRI oncology research consortium. Cancer Investig 31:323–329

    Article  CAS  Google Scholar 

  28. Harzstark AL, Small EJ, Weinberg VK et al (2011) A phase 1 study of everolimus and sorafenib for metastatic clear cell renal cell carcinoma. Cancer 117:4194–4200

    Article  CAS  PubMed  Google Scholar 

  29. Koeberle D, Dufour J-F, Demeter G et al (2016) Sorafenib with or without everolimus in patients with advanced hepatocellular carcinoma (HCC): a randomized multicenter, multinational phase II trial (SAKK 77/08 and SASL 29)†. Ann Oncol 27:856–861

    Article  CAS  PubMed  Google Scholar 

  30. Mattonet C, Nogova L, Scheffler M et al (2015) SORAVE: A phase I trial to evaluate safety and efficacy of combination therapy with everolimus and sorafenib. JCO 33:2550–2550

    Article  Google Scholar 

  31. Nogova L, Mattonet C, Scheffler M et al (2020) Sorafenib and everolimus in patients with advanced solid tumors and KRAS-mutated NSCLC: a phase I trial with early pharmacodynamic FDG-PET assessment. Cancer Med 9:4991–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raizer JJ, Grimm SA, Penas-Prado M et al (2015) A phase I trial everolimus and sorafenib in patients with recurrent high-grade gliomas: brain tumor treatment collaborative trial 09–01. JCO 33:2061–2061

    Article  Google Scholar 

  33. Sherman EJ, Ho AL, Fury MG et al (2015) Combination of everolimus and sorafenib in the treatment of thyroid cancer: update on phase II study. JCO 33:6069–6069

    Article  Google Scholar 

  34. Toffalorio F, Spitaleri G, Catania C et al (2014) Phase Ib of sorafenib in combination with everolimus in patients with advanced solid tumors, selected on the basis of molecular targets. Oncol 19:344–345

    Article  Google Scholar 

  35. Kummar S, Chen HX, Wright J et al (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov 9:843–856

    Article  CAS  PubMed  Google Scholar 

  36. El-Madani M, Hénin E, Lefort T et al (2015) Multiparameter Phase I trials: a tool for model-based development of targeted agent combinations–example of EVESOR trial. Future Oncol 11:1511–1518

    Article  CAS  PubMed  Google Scholar 

  37. Kalra S, Rini BI, Jonasch E (2015) Alternate sunitinib schedules in patients with metastatic renal cell carcinoma. Ann Oncol 26:1300–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clark JW, Eder JP, Ryan D et al (2005) Safety and pharmacokinetics of the dual action raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 11:5472–5480

    Article  CAS  PubMed  Google Scholar 

  39. O’Donnell A, Faivre S, Burris HA et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. JCO 26:1588–1595

    Article  Google Scholar 

  40. Hillman GG, Singh-Gupta V, Al-Bashir AK et al (2010) Dynamic contrast-enhanced magnetic resonance imaging of sunitinib-induced vascular changes to schedule chemotherapy in renal cell carcinoma xenograft tumors. Transl Oncol 3:293–306

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liang J, Cheng Q, Huang J et al (2019) Monitoring tumour microenvironment changes during anti-angiogenesis therapy using functional MRI. Angiogenesis 22:457–470

    Article  CAS  PubMed  Google Scholar 

  42. Segers J, Fazio VD, Ansiaux R et al (2006) Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide: Importance of optimal scheduling to exploit the ‘normalization’ window of the tumor vasculature. Cancer Lett 244:129–135

    Article  CAS  PubMed  Google Scholar 

  43. Sheiner LB, Beal SL, Sambol NC (1989) Study designs for dose-ranging. Clin Pharmacol Ther 46:63–77

    Article  CAS  PubMed  Google Scholar 

  44. El-Madani M, Colomban O, Tod M et al (2017) EVESOR, a model-based, multiparameter, Phase I trial to optimize the benefit/toxicity ratio of everolimus and sorafenib. Future Oncol 13:679–693

    Article  CAS  PubMed  Google Scholar 

  45. KEGG PATHWAY Database. In: KEGG PATHWAY Database. https://www.genome.jp/kegg/pathway.html. Accessed 21 Jul 2021

  46. Wagle M-C, Kirouac D, Klijn C et al (2018) A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types. npj Precision Onc 2:1–12

    Article  CAS  Google Scholar 

  47. Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481–504

    Article  CAS  PubMed  Google Scholar 

  48. Pignochino Y, Dell’Aglio C, Inghilleri S et al (2015) The combination of sorafenib and everolimus shows antitumor activity in preclinical models of malignant pleural mesothelioma. BMC Cancer 15:374

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pawaskar DK, Straubinger RM, Fetterly GJ et al (2013) Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemother Pharmacol 71:1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng J, Lu J, Wang X et al (2015) Comparative metabolomic profiling of hepatocellular carcinoma cells treated with sorafenib monotherapy vs. sorafenib-everolimus combination therapy. Med Sci Monit 21:1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mariniello B, Rosato A, Zuccolotto G et al (2012) Combination of sorafenib and everolimus impacts therapeutically on adrenocortical tumor models. Endocr Relat Cancer 19:527–539

    Article  CAS  PubMed  Google Scholar 

  52. How JA, Patel S, Fellman B et al (2021) Toxicity and efficacy of the combination of pembrolizumab with recommended or reduced starting doses of lenvatinib for treatment of recurrent endometrial cancer. Gynecol Oncol 162:24–31. https://doi.org/10.1016/j.ygyno.2021.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rugo HS, Seneviratne L, Beck JT et al (2017) Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol 18:654–662. https://doi.org/10.1016/S1470-2045(17)30109-2

    Article  CAS  PubMed  Google Scholar 

  54. Roberts TG, Goulart BH, Squitieri L et al (2004) Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. JAMA 292:2130–2140

    Article  CAS  PubMed  Google Scholar 

  55. Italiano A, Massard C, Bahleda R et al (2008) Treatment outcome and survival in participants of phase I oncology trials carried out from 2003 to 2006 at Institut Gustave Roussy. Ann Oncol 19:787–792

    Article  CAS  PubMed  Google Scholar 

  56. Arkenau H-T, Olmos D, Ang JE et al (2008) Clinical outcome and prognostic factors for patients treated within the context of a phase I study: the royal marsden hospital experience. Br J Cancer 98:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tella SH, Kommalapati A, Borad MJ, Mahipal A (2020) Second-line therapies in advanced biliary tract cancers. Lancet Oncol 21:e29–e41. https://doi.org/10.1016/S1470-2045(19)30733-8

    Article  CAS  PubMed  Google Scholar 

  58. El-Khoueiry AB, Rankin CJ, Ben-Josef E et al (2012) SWOG 0514: a phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma. Invest New Drugs 30:1646–1651

    Article  CAS  PubMed  Google Scholar 

  59. Yokoi K, Kobayashi A, Motoyama H et al (2018) Survival pathway of cholangiocarcinoma via AKT/mTOR signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib. Oncol Rep 39:843–850

    CAS  PubMed  Google Scholar 

  60. Javle M, Lowery M, Shroff RT et al (2017) Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. JCO 36:276–282

    Article  Google Scholar 

  61. Abou-Alfa GK, Macarulla T, Javle MM et al (2020) Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 21:796–807. https://doi.org/10.1016/S1470-2045(20)30157-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study has been supported by the Hospices Civils de Lyon (bourse Actions Incitatives); Ligue contre le Cancer; Association de Recherche contre le Cancer; Novartis SAS (everolimus furniture); and the Institut National du Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit You.

Ethics declarations

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Ethical approval

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 919 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varnier, R., Puszkiel, A., Tod, M. et al. Clinical results of the EVESOR trial, a multiparameter phase I trial of everolimus and sorafenib combination in solid tumors. Cancer Chemother Pharmacol 91, 361–373 (2023). https://doi.org/10.1007/s00280-023-04508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04508-9

Keywords

Navigation