Skip to main content

Advertisement

Log in

Use of cucurbitacins for lung cancer research and therapy

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research and even clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Liu X, Liu B, Li R, Wang F, Wang N, Zhang M, Bai Y, Wu J, Liu L, Han D, Li Z, Feng B, Zhou G, Wang S, Zeng L, Miao J, Yao Y, Liang B, Huang L, Wang Q, Wu Y (2020) miR-146a-5p plays an oncogenic role in NSCLC via suppression of TRAF6. Front Cell Dev Biol 8:847. https://doi.org/10.3389/fcell.2020.00847

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mamdani H, Jalal SI (2020) Histone deacetylase inhibition in non-small cell lung cancer: hype or hope? Front Cell Dev Biol 8:582370. https://doi.org/10.3389/fcell.2020.582370

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuerban K, Gao X, Zhang H, Liu J, Dong M, Wu L, Ye R, Feng M, Ye L (2020) Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm Sin B 10(8):1534–1548. https://doi.org/10.1016/j.apsb.2020.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  5. Qian J, Chen R, Zhao R, Han Y, Yu Y (2020) Comprehensive molecular characterizations of chinese patients with different subtypes of lung squamous cell carcinoma. Front Oncol 10:607130. https://doi.org/10.3389/fonc.2020.607130

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang M, Tian J, Wang R, Song M, Zhao R, Chen H, Liu K, Shim JH, Zhu F, Dong Z, Lee MH (2020) Dasatinib inhibits lung cancer cell growth and patient derived tumor growth in mice by targeting LIMK1. Front Cell Dev Biol 8:556532. https://doi.org/10.3389/fcell.2020.556532

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553(7689):446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  8. Xu Z, Yan Y, Xiao L, Dai S, Zeng S, Qian L, Wang L, Yang X, Xiao Y, Gong Z (2017) Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS ONE 12(4):e0175977. https://doi.org/10.1371/journal.pone.0175977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rami-Porta R, Call S, Dooms C, Obiols C, Sanchez M, Travis WD, Vollmer I (2018) Lung cancer staging: a concise update. Eur Respir J. https://doi.org/10.1183/13993003.00190-2018

    Article  PubMed  Google Scholar 

  10. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311. https://doi.org/10.1016/S0140-6736(16)30958-8

    Article  CAS  PubMed  Google Scholar 

  11. Yan Y, Xu Z, Qian L, Zeng S, Zhou Y, Chen X, Wei J, Gong Z (2019) Identification of CAV1 and DCN as potential predictive biomarkers for lung adenocarcinoma. Am J Physiol Lung Cell Mol Physiol 316(4):L630–L643. https://doi.org/10.1152/ajplung.00364.2018

    Article  PubMed  Google Scholar 

  12. Osmani L, Askin F, Gabrielson E, Li QK (2018) Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol 52(Pt 1):103–109. https://doi.org/10.1016/j.semcancer.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  13. Lim ZF, Ma PC (2019) Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 12(1):134. https://doi.org/10.1186/s13045-019-0818-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang S, Zhang Z, Wang Q (2019) Emerging therapies for small cell lung cancer. J Hematol Oncol 12(1):47. https://doi.org/10.1186/s13045-019-0736-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Attard E, Martinoli MG (2015) Cucurbitacin E, an experimental lead triterpenoid with anticancer, immunomodulatory and novel effects against degenerative diseases. A Mini-Rev Curr Top Med Chem 15(17):1708–1713. https://doi.org/10.2174/1568026615666150427121331

    Article  CAS  Google Scholar 

  16. Lin X, Farooqi AA (2020) Cucurbitacin mediated regulation of deregulated oncogenic signaling cascades and non-coding RNAs in different cancers: spotlight on JAK/STAT, Wnt/beta-catenin, mTOR, TRAIL-mediated pathways. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.10.012

    Article  PubMed  Google Scholar 

  17. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, Das H, Srivastava S, Prasad S, Srivastava SK (2019) Role of phytochemicals in cancer prevention. Int J Mol Sci. https://doi.org/10.3390/ijms20204981

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garg S, Kaul SC, Wadhwa R (2018) Cucurbitacin B and cancer intervention: chemistry, biology and mechanisms (Review). Int J Oncol 52(1):19–37. https://doi.org/10.3892/ijo.2017.4203

    Article  CAS  PubMed  Google Scholar 

  19. Hussain SS, Kumar AP, Ghosh R (2016) Food-based natural products for cancer management: is the whole greater than the sum of the parts? Semin Cancer Biol 40–41:233–246. https://doi.org/10.1016/j.semcancer.2016.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wei J, Yan Y, Chen X, Qian L, Zeng S, Li Z, Dai S, Gong Z, Xu Z (2019) The roles of plant-derived triptolide on non-small cell lung cancer. Oncol Res 27(7):849–858. https://doi.org/10.3727/096504018X15447833065047

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, Chen M (2015) Cucurbitacins: a systematic review of the phytochemistry and anticancer activity. Am J Chin Med 43(7):1331–1350. https://doi.org/10.1142/S0192415X15500755

    Article  CAS  PubMed  Google Scholar 

  22. Ramezani M, Rahmani F, Dehestani A (2017) Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of cucurbitacin E and on antibacterial property of Cucumis sativus. BMC Complement Altern Med 17(1):295. https://doi.org/10.1186/s12906-017-1808-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang W, Zhao X, Hu H, Chen D, Gu J, Deng Y, Sun J (2010) Galactosylated solid lipid nanoparticles with cucurbitacin B improves the liver targetability. Drug Deliv 17(3):114–122. https://doi.org/10.3109/10717540903580176

    Article  CAS  PubMed  Google Scholar 

  24. Yang DK, Kim SJ (2018) Cucurbitacin I protects H9c2 cardiomyoblasts against H2O2-induced oxidative stress via protection of mitochondrial dysfunction. Oxid Med Cell Longev 2018:3016382. https://doi.org/10.1155/2018/3016382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mao D, Liu AH, Wang ZP, Zhang XW, Lu H (2019) Cucurbitacin B inhibits cell proliferation and induces cell apoptosis in colorectal cancer by modulating methylation status of BTG3. Neoplasma 66(4):593–602. https://doi.org/10.4149/neo_2018_180929N729

    Article  CAS  PubMed  Google Scholar 

  26. Niu Y, Sun W, Lu JJ, Ma DL, Leung CH, Pei L, Chen X (2016) PTEN activation by DNA damage induces protective autophagy in response to cucurbitacin B in hepatocellular carcinoma cells. Oxid Med Cell Longev 2016:4313204. https://doi.org/10.1155/2016/4313204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang T, Li J, Dong Y, Zhai D, Lai L, Dai F, Deng H, Chen Y, Liu M, Yi Z (2012) Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat 135(2):445–458. https://doi.org/10.1007/s10549-012-2175-5

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Bao J, Guo J, Ding Q, Lu J, Huang M, Wang Y (2012) Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 23(8):777–787. https://doi.org/10.1097/CAD.0b013e3283541384

    Article  CAS  PubMed  Google Scholar 

  29. Hussain H, Green IR, Saleem M, Khattak KF, Irshad M, Ali M (2019) Cucurbitacins as anticancer agents: a patent review. Recent Pat Anticancer Drug Discov 14(2):133–143. https://doi.org/10.2174/1574892813666181119123035

    Article  CAS  PubMed  Google Scholar 

  30. Lee DH, Iwanski GB, Thoennissen NH (2010) Cucurbitacin: ancient compound shedding new light on cancer treatment. Sci World J 10:413–418. https://doi.org/10.1100/tsw.2010.44

    Article  CAS  Google Scholar 

  31. Patlolla JM, Rao CV (2012) Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr Pharm Biotechnol 13(1):147–155. https://doi.org/10.2174/138920112798868719

    Article  CAS  PubMed  Google Scholar 

  32. Rios JL, Andujar I, Escandell JM, Giner RM, Recio MC (2012) Cucurbitacins as inducers of cell death and a rich source of potential anticancer compounds. Curr Pharm Des 18(12):1663–1676. https://doi.org/10.2174/138161212799958549

    Article  CAS  PubMed  Google Scholar 

  33. Ateba SB, Mvondo MA, Ngeu ST, Tchoumtchoua J, Awounfack CF, Njamen D, Krenn L (2018) Natural terpenoids against female breast cancer: a 5 year recent research. Curr Med Chem 25(27):3162–3213. https://doi.org/10.2174/0929867325666180214110932

    Article  CAS  PubMed  Google Scholar 

  34. Deng C, Zhang B, Zhang S, Duan C, Cao Y, Kang W, Yan H, Ding X, Zhou F, Wu L, Duan G, Shen S, Xu G, Zhang W, Chen M, Huang S, Zhang X, Lv Y, Ling T, Wang L, Zou X (2016) Low nanomolar concentrations of cucurbitacin-I induces G2/M phase arrest and apoptosis by perturbing redox homeostasis in gastric cancer cells in vitro and in vivo. Cell Death Dis 7:e2106. https://doi.org/10.1038/cddis.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duangmano S, Sae-Lim P, Suksamrarn A, Patmasiriwat P, Domann FE (2015) Corrigendum to “Cucurbitacin B causes increased radiation sensitivity of human breast cancer cells via G2/M cell cycle arrest.” J Oncol 2015:486850. https://doi.org/10.1155/2015/486850

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo J, Zhao W, Hao W, Ren G, Lu J, Chen X (2014) Cucurbitacin B induces DNA damage, G2/M phase arrest, and apoptosis mediated by reactive oxygen species (ROS) in leukemia K562 cells. Anticancer Agents Med Chem 14(8):1146–1153. https://doi.org/10.2174/1871520614666140601220915

    Article  CAS  PubMed  Google Scholar 

  37. Roopa L, Akshai PS, Pravin Kumar R (2020) Connecting the dots in the mechanism of action of cucurbitacin E (CurE)—path analysis and steered molecular dynamics reveal the precise site of entry and the passage of CurE in filamentous actin. J Biomol Struct Dyn 38(3):635–646. https://doi.org/10.1080/07391102.2019.1593243

    Article  CAS  PubMed  Google Scholar 

  38. Gabrielsen M, Schuldt M, Munro J, Borucka D, Cameron J, Baugh M, Mleczak A, Lilla S, Morrice N, Olson MF (2013) Cucurbitacin covalent bonding to cysteine thiols: the filamentous-actin severing protein Cofilin1 as an exemplary target. Cell Commun Signal 11:58. https://doi.org/10.1186/1478-811X-11-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mallick MN, Khan W, Parveen R, Ahmad S, Sadaf NMZ, Ahmad I, Husain SA (2017) Exploring the cytotoxic potential of triterpenoids-enriched fraction of bacopa monnieri by implementing in vitro, in vivo, and in silico approaches. Pharmacogn Mag 13(Suppl 3):S595–S606. https://doi.org/10.4103/pm.pm_397_16

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silva IT, Carvalho A, Lang KL, Dudek SE, Masemann D, Duran FJ, Caro MS, Rapp UR, Wixler V, Schenkel EP, Simoes CM, Ludwig S (2015) In vitro and in vivo antitumor activity of a novel semisynthetic derivative of cucurbitacin B. PLoS ONE 10(2):e0117794. https://doi.org/10.1371/journal.pone.0117794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lopez Sambrooks C, Baro M, Quijano A, Narayan A, Cui W, Greninger P, Egan R, Patel A, Benes CH, Saltzman WM, Contessa JN (2018) Oligosaccharyltransferase inhibition overcomes therapeutic resistance to EGFR tyrosine kinase inhibitors. Cancer Res 78(17):5094–5106. https://doi.org/10.1158/0008-5472.CAN-18-0505

    Article  PubMed  Google Scholar 

  42. Zhou S, Yan Y, Chen X, Wang X, Zeng S, Qian L, Wei J, Yang X, Zhou Y, Gong Z, Xu Z (2019) Roles of highly expressed PAICS in lung adenocarcinoma. Gene 692:1–8. https://doi.org/10.1016/j.gene.2018.12.064

    Article  CAS  PubMed  Google Scholar 

  43. Guo Y, Song J, Wang Y, Huang L, Sun L, Zhao J, Zhang S, Jing W, Ma J, Han C (2020) Concurrent genetic alterations and other biomarkers predict treatment efficacy of EGFR-TKIs in EGFR-mutant non-small cell lung cancer: a review. Front Oncol 10:610923. https://doi.org/10.3389/fonc.2020.610923

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bironzo P, Di Maio M (2018) A review of guidelines for lung cancer. J Thorac Dis 10(Suppl 13):S1556–S1563. https://doi.org/10.21037/jtd.2018.03.54

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang JY, Chirieac LR, D’Amico TA, Dilling TJ, Dobelbower M, Govindan R, Gubens MA, Hennon M, Horn L, Lackner RP, Lanuti M, Leal TA, Lilenbaum R, Lin J, Loo BW, Martins R, Otterson GA, Patel SP, Reckamp K, Riely GJ, Schild SE, Shapiro TA, Stevenson J, Swanson SJ, Tauer K, Yang SC, Gregory K, Hughes M (2018) NCCN guidelines insights: non-small cell lung cancer, version 5.2018. J Natl Compr Canc Netw 16(7):807–821. https://doi.org/10.6004/jnccn.2018.0062

    Article  PubMed  Google Scholar 

  46. Liu P, Xiang Y, Liu X, Zhang T, Yang R, Chen S, Xu L, Yu Q, Zhao H, Zhang L, Liu Y, Si Y (2019) Cucurbitacin B induces the lysosomal degradation of EGFR and suppresses the CIP2A/PP2A/Akt signaling axis in gefitinib-resistant non-small cell lung cancer. Molecules. https://doi.org/10.3390/molecules24030647

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang M, Bian ZG, Zhang Y, Wang JH, Kan L, Wang X, Niu HY, He P (2014) Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells. Mol Med Rep 10(6):2905–2911. https://doi.org/10.3892/mmr.2014.2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan N, Jajeh F, Khan MI, Mukhtar E, Shabana SM, Mukhtar H (2017) Sestrin-3 modulation is essential for therapeutic efficacy of cucurbitacin B in lung cancer cells. Carcinogenesis 38(2):184–195. https://doi.org/10.1093/carcin/bgw124

    Article  CAS  PubMed  Google Scholar 

  49. Kausar H, Munagala R, Bansal SS, Aqil F, Vadhanam MV, Gupta RC (2013) Cucurbitacin B potently suppresses non-small-cell lung cancer growth: identification of intracellular thiols as critical targets. Cancer Lett 332(1):35–45. https://doi.org/10.1016/j.canlet.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Li Q, Li D, Shen Z, Zhang K, Bi Z, Li Y (2020) Long non-coding RNA MNX1-AS1 promotes progression of triple negative breast cancer by enhancing phosphorylation of Stat3. Front Oncol 10:1108. https://doi.org/10.3389/fonc.2020.01108

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746. https://doi.org/10.1038/nrc3818

    Article  CAS  PubMed  Google Scholar 

  52. Liao J, Chen Z, Yu Z, Huang T, Hu D, Su Y, He Z, Zou C, Zhang L, Lin X (2020) The role of ARL4C in erlotinib resistance: activation of the Jak2/Stat 5/beta-catenin signaling pathway. Front Oncol 10:585292. https://doi.org/10.3389/fonc.2020.585292

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Lee D, Brimer T, Hussaini M, Sokol L (2020) Genomics of peripheral T-cell lymphoma and its implications for personalized medicine. Front Oncol 10:898. https://doi.org/10.3389/fonc.2020.00898

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM (2005) Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 24(20):3236–3245. https://doi.org/10.1038/sj.onc.1208470

    Article  CAS  PubMed  Google Scholar 

  55. Li YM, Yu JM, Liu ZY, Yang HJ, Tang J, Chen ZN (2019) Programmed death ligand 1 indicates pre-existing adaptive immune response by tumor-infiltrating CD8(+) T cells in non-small cell lung cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20205138

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dai S, Yan Y, Xu Z, Zeng S, Qian L, Huo L, Li X, Sun L, Gong Z (2017) SCD1 confers temozolomide resistance to human glioma cells via the Akt/GSK3beta/beta-catenin signaling axis. Front Pharmacol 8:960. https://doi.org/10.3389/fphar.2017.00960

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Chen C, Zhang X, He C, Zhao P, Li M, Fan T, Yan R, Lu Y, Lee RJ, Khan MW, Sarfraz M, Ma X, Yang T, Xiang G (2020) Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm Sin B 10(6):1106–1121. https://doi.org/10.1016/j.apsb.2019.10.011

    Article  CAS  PubMed  Google Scholar 

  58. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, Maurya R, Meeran SM (2016) Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/beta-catenin signaling axis. Sci Rep 6:21860. https://doi.org/10.1038/srep21860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aboubakar Nana F, Vanderputten M, Ocak S (2019) Role of focal adhesion kinase in small-cell lung cancer and its potential as a therapeutic target. Cancers (Basel). https://doi.org/10.3390/cancers11111683

    Article  Google Scholar 

  60. Wang X, Adjei AA (2015) Lung cancer and metastasis: new opportunities and challenges. Cancer Metastasis Rev 34(2):169–171. https://doi.org/10.1007/s10555-015-9562-4

    Article  CAS  PubMed  Google Scholar 

  61. Guo J, Wu G, Bao J, Hao W, Lu J, Chen X (2014) Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner. PLoS ONE 9(2):e88140. https://doi.org/10.1371/journal.pone.0088140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kong H, Chandel NS (2018) Regulation of redox balance in cancer and T cells. J Biol Chem 293(20):7499–7507. https://doi.org/10.1074/jbc.TM117.000257

    Article  CAS  PubMed  Google Scholar 

  63. Yin Y, Chen F (2020) Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Acta Pharm Sin B 10(12):2259–2271. https://doi.org/10.1016/j.apsb.2020.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shukla S, Khan S, Kumar S, Sinha S, Farhan M, Bora HK, Maurya R, Meeran SM (2015) Cucurbitacin B alters the expression of tumor-related genes by epigenetic modifications in NSCLC and inhibits NNK-induced lung tumorigenesis. Cancer Prev Res (Phila) 8(6):552–562. https://doi.org/10.1158/1940-6207.CAPR-14-0286

    Article  CAS  Google Scholar 

  65. Liu Y, Yang H, Guo Q, Liu T, Jiang Y, Zhao M, Zeng K, Tu P (2020) Cucurbitacin E inhibits Huh7 hepatoma carcinoma cell proliferation and metastasis via suppressing MAPKs and JAK/STAT3 pathways. Molecules. https://doi.org/10.3390/molecules25030560

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang P, Liu W, Fu R, Ding GB, Amin S, Li Z (2020) Cucurbitacin E chemosensitizes colorectal cancer cells via mitigating TFAP4/Wnt/beta-catenin signaling. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.0c05551

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22(3):386–399. https://doi.org/10.1039/b418841c

    Article  CAS  PubMed  Google Scholar 

  68. Hsu YC, Huang TY, Chen MJ (2014) Therapeutic ROS targeting of GADD45gamma in the induction of G2/M arrest in primary human colorectal cancer cell lines by cucurbitacin E. Cell Death Dis 5:e1198. https://doi.org/10.1038/cddis.2014.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng SE, Lee IT, Lin CC, Wu WL, Hsiao LD, Yang CM (2013) ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS ONE 8(1):e54125. https://doi.org/10.1371/journal.pone.0054125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feng H, Zang L, Zhao ZX, Kan QC (2014) Cucurbitacin-E inhibits multiple cancer cells proliferation through attenuation of Wnt/beta-catenin signaling. Cancer Biother Radiopharm 29(5):210–214. https://doi.org/10.1089/cbr.2014.1614

    Article  CAS  PubMed  Google Scholar 

  71. Ma G, Luo W, Lu J, Ma DL, Leung CH, Wang Y, Chen X (2016) Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem Biol Interact 253:1–9. https://doi.org/10.1016/j.cbi.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  72. Hsu PC, Tian B, Yang YL, Wang YC, Liu S, Urisman A, Yang CT, Xu Z, Jablons DM, You L (2019) Cucurbitacin E inhibits the yesassociated protein signaling pathway and suppresses brain metastasis of human nonsmall cell lung cancer in a murine model. Oncol Rep 42(2):697–707. https://doi.org/10.3892/or.2019.7207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klein R, Stiller S, Gashaw I (2012) Epidermal growth factor upregulates endometrial CYR61 expression via activation of the JAK2/STAT3 pathway. Reprod Fertil Dev 24(3):482–489. https://doi.org/10.1071/RD10335

    Article  CAS  PubMed  Google Scholar 

  74. Huang X, Renwick JA, Sachdev-Gupta K (1993) Oviposition stimulants and deterrents regulating differential acceptance ofIberis amara by Pieris rapae andP. napi oleracea. J Chem Ecol 19(8):1645–1663. https://doi.org/10.1007/BF00982298

    Article  CAS  PubMed  Google Scholar 

  75. Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM (2003) Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63(6):1270–1279

    CAS  PubMed  Google Scholar 

  76. Guo H, Kuang S, Song QL, Liu M, Sun XX, Yu Q (2018) Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol Sin 39(3):425–437. https://doi.org/10.1038/aps.2017.99

    Article  CAS  PubMed  Google Scholar 

  77. Hsu HS, Huang PI, Chang YL, Tzao C, Chen YW, Shih HC, Hung SC, Chen YC, Tseng LM, Chiou SH (2011) Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD133-positive cells. Cancer 117(13):2970–2985. https://doi.org/10.1002/cncr.25869

    Article  CAS  PubMed  Google Scholar 

  78. Ito M, Codony-Servat C, Codony-Servat J, Llige D, Chaib I, Sun X, Miao J, Sun R, Cai X, Verlicchi A, Okada M, Molina-Vila MA, Karachaliou N, Cao P, Rosell R (2019) Targeting PKCiota-PAK1 signaling pathways in EGFR and KRAS mutant adenocarcinoma and lung squamous cell carcinoma. Cell Commun Signal 17(1):137. https://doi.org/10.1186/s12964-019-0446-z

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang S, Wang SY, Du F, Han Q, Wang EH, Luo EJ, Liu Y (2019) Knockdown of PAK1 inhibits the proliferation and invasion of non-small cell lung cancer cells through the ERK pathway. Appl Immunohistochem Mol Morphol. https://doi.org/10.1097/PAI.0000000000000803

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nguyen BC, Be Tu PT, Tawata S, Maruta H (2015) Combination of immunoprecipitation (IP)-ATP_Glo kinase assay and melanogenesis for the assessment of potent and safe PAK1-blockers in cell culture. Drug Discov Ther 9(4):289–295. https://doi.org/10.5582/ddt.2015.01041

    Article  CAS  PubMed  Google Scholar 

  81. Ni Y, Wu S, Wang X, Zhu G, Chen X, Ding Y, Jiang W (2018) Cucurbitacin I induces pro-death autophagy in A549 cells via the ERK-mTOR-STAT3 signaling pathway. J Cell Biochem 119(7):6104–6112. https://doi.org/10.1002/jcb.26808

    Article  CAS  PubMed  Google Scholar 

  82. Zhu X, Huang H, Zhang J, Liu H, Ao R, Xiao M, Wu Y (2018) The anticancer effects of cucurbitacin I inhibited cell growth of human nonsmall cell lung cancer through PI3K/AKT/p70S6K pathway. Mol Med Rep 17(2):2750–2756. https://doi.org/10.3892/mmr.2017.8141

    Article  CAS  PubMed  Google Scholar 

  83. Wang WD, Liu Y, Su Y, Xiong XZ, Shang D, Xu JJ, Liu HJ (2017) Antitumor and apoptotic effects of cucurbitacin a in a-549 lung carcinoma cells is mediated via G2/M cell cycle arrest and M-Tor/Pi3k/Akt signalling pathway. Afr J Tradit Complement Altern Med 14(2):75–82. https://doi.org/10.21010/ajtcam.v14i2.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sikander M, Malik S, Chauhan N, Khan P, Kumari S, Kashyap VK, Khan S, Ganju A, Halaweish FT, Yallapu MM, Jaggi M, Chauhan SC (2019) Cucurbitacin D reprograms glucose metabolic network in prostate cancer. Cancers (Basel). https://doi.org/10.3390/cancers11030364

    Article  Google Scholar 

  85. Jacquot C, Rousseau B, Carbonnelle D, Chinou I, Malleter M, Tomasoni C, Roussakis C (2014) Cucurbitacin-D-induced CDK1 mRNA up-regulation causes proliferation arrest of a non-small cell lung carcinoma cell line (NSCLC-N6). Anticancer Res 34(9):4797–4806

    CAS  PubMed  Google Scholar 

  86. Ku JM, Hong SH, Kim HI, Kim MJ, Kim SK, Kim M, Choi SY, Park J, Kim HK, Kim JH, Seo HS, Shin YC, Ko SG (2020) Synergistic anticancer effect of combined use of Trichosanthes kirilowii with cisplatin and pemetrexed enhances apoptosis of H1299 non-small-cell lung cancer cells via modulation of ErbB3. Phytomedicine 66:153109. https://doi.org/10.1016/j.phymed.2019.153109

    Article  CAS  PubMed  Google Scholar 

  87. Ni L, Zhu X, Gong C, Luo Y, Wang L, Zhou W, Zhu S, Li Y (2015) Trichosanthes kirilowii fruits inhibit non-small cell lung cancer cell growth through mitotic cell-cycle arrest. Am J Chin Med 43(2):349–364. https://doi.org/10.1142/S0192415X15500238

    Article  PubMed  Google Scholar 

  88. Chen XB, Chen GY, Liu JH, Lei M, Meng YH, Guo DA, Liu X, Hu LH (2014) Cytotoxic cucurbitane triterpenoids isolated from the rhizomes of Hemsleya amabilis. Fitoterapia 94:88–93. https://doi.org/10.1016/j.fitote.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  89. Wu J, Wu Y, Yang BB (2002) Anticancer activity of Hemsleya amabilis extract. Life Sci 71(18):2161–2170. https://doi.org/10.1016/s0024-3205(02)02013-1

    Article  CAS  PubMed  Google Scholar 

  90. Boykin C, Zhang G, Chen YH, Zhang RW, Fan XE, Yang WM, Lu Q (2011) Cucurbitacin IIa: a novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation. Br J Cancer 104(5):781–789. https://doi.org/10.1038/bjc.2011.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang J, Song Y, Liang Y, Zou H, Zuo P, Yan M, Jing S, Li T, Wang Y, Li D, Zhang T, Wei Z (2019) Cucurbitacin IIa interferes with EGFR-MAPK signaling pathway leads to proliferation inhibition in A549cells. Food Chem Toxicol 132:110654. https://doi.org/10.1016/j.fct.2019.110654

    Article  CAS  PubMed  Google Scholar 

  92. Torres-Moreno H, Marcotullio MC, Velazquez C, Ianni F, Garibay-Escobar A, Robles-Zepeda RE (2020) Cucurbitacin IIb, a steroidal triterpene from Ibervillea sonorae induces antiproliferative and apoptotic effects on cervical and lung cancer cells. Steroids 157:108597. https://doi.org/10.1016/j.steroids.2020.108597

    Article  CAS  PubMed  Google Scholar 

  93. Chen C, Qiang S, Lou L, Zhao W (2009) Cucurbitane-type triterpenoids from the stems of Cucumis melo. J Nat Prod 72(5):824–829. https://doi.org/10.1021/np800692t

    Article  CAS  PubMed  Google Scholar 

  94. Cucurbitacin B | C32H46O8—PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/5281316#section=Toxicological-Information. Accessed 2020/6/8

  95. Edery H, Schatzberg-Porath G, Gitter S (1961) Pharmaco-dynamic activity of elatericin (cucurbitacin D). Arch Int Pharmacodyn Ther 130:315–335

    CAS  PubMed  Google Scholar 

  96. Cucurbitacin E | C32H44O8—PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/5281319#section=Toxicity. Accessed 2020/6/8

  97. Hong SH, Ku JM, Lim YS, Lee SY, Kim JH, Cheon C, Ko SG (2020) Cucurbitacin D overcomes gefitinib resistance by blocking EGF binding to EGFR and inducing cell death in NSCLCs. Front Oncol 10:62. https://doi.org/10.3389/fonc.2020.00062

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang Z, Zhu W, Gao M, Wu C, Yang C, Yang J, Wu G, Yang B, Kuang H (2017) Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: a pharmacokinetics study after oral administration of cucurbitacin tablets. J Chromatogr B Analyt Technol Biomed Life Sci 1065–1066:63–69. https://doi.org/10.1016/j.jchromb.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  99. Bai M, Li HL, He JC, He GH, Feng EF, Liu YQ, Shi PP, Xu GL (2014) Development and validation of an LC-ESI-MS/MS method for the quantitation of hemslecin A in rhesus monkey plasma and its application in pharmacokinetics. Biomed Chromatogr 28(3):385–390. https://doi.org/10.1002/bmc.3032

    Article  CAS  PubMed  Google Scholar 

  100. Wang Y, Zhao GX, Xu LH, Liu KP, Pan H, He J, Cai JY, Ouyang DY, He XH (2014) Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. PLoS ONE 9(2):e89751. https://doi.org/10.1371/journal.pone.0089751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Varricchio A, De Lucia A, Varricchio AM, Della Volpe A, Mansi N, Pastore V, Ciprandi G (2017) Sinuclean Nebules treatment in children suffering from otitis media with effusion. Int J Pediatr Otorhinolaryngol 94:30–35. https://doi.org/10.1016/j.ijporl.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  102. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31. https://doi.org/10.4103/0976-0105.177703

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lu P, Yu B, Xu J (2012) Cucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancer. Cancer Biother Radiopharm 27(8):495–503. https://doi.org/10.1089/cbr.2012.1219

    Article  CAS  PubMed  Google Scholar 

  104. Molavi O, Shayeganpour A, Somayaji V, Hamdy S, Brocks DR, Lavasanifar A, Kwon GS, Samuel J (2006) Development of a sensitive and specific liquid chromatography/mass spectrometry method for the quantification of cucurbitacin I (JSI-124) in rat plasma. J Pharm Pharm Sci 9(2):158–164

    CAS  PubMed  Google Scholar 

  105. Hunsakunachai N, Nuengchamnong N, Jiratchariyakul W, Kummalue T, Khemawoot P (2019) Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC Complement Altern Med 19(1):157. https://doi.org/10.1186/s12906-019-2568-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fiori GML, D’Agate S, Rocha A, Pereira AMS, Della Pasqua O, Lopes NP (2017) Development and validation of a quantification method for cucurbitacins E and I in rat plasma: application to population pharmacokinetic studies. J Pharm Biomed Anal 144:99–105. https://doi.org/10.1016/j.jpba.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  107. Wang S, Guan X, Zhong X, Yang Z, Huang W, Jia B, Cui T (2016) Simultaneous determination of cucurbitacin IIa and cucurbitacin IIb of Hemsleya amabilis by HPLC-MS/MS and their pharmacokinetic study in normal and indomethacin-induced rats. Biomed Chromatogr 30(10):1632–1640. https://doi.org/10.1002/bmc.3733

    Article  CAS  PubMed  Google Scholar 

  108. Dong XD, Zhang M, Ma X, Wang JQ, Lei ZN, Teng QX, Li YD, Lin L, Feng W, Chen ZS (2020) Bruton’s tyrosine kinase (BTK) inhibitor RN486 overcomes ABCB1-mediated multidrug resistance in cancer cells. Front Cell Dev Biol 8:865. https://doi.org/10.3389/fcell.2020.00865

    Article  PubMed  PubMed Central  Google Scholar 

  109. Metti S, Gambarotto L, Chrisam M, Baraldo M, Braghetta P, Blaauw B, Bonaldo P (2020) The polyphenol pterostilbene ameliorates the myopathic phenotype of collagen VI deficient mice via autophagy induction. Front Cell Dev Biol 8:580933. https://doi.org/10.3389/fcell.2020.580933

    Article  PubMed  PubMed Central  Google Scholar 

  110. Uchida Y, Ferdousi F, Zheng YW, Oda T, Isoda H (2020) Global gene expression profiling reveals isorhamnetin induces hepatic-lineage specific differentiation in human amniotic epithelial cells. Front Cell Dev Biol 8:578036. https://doi.org/10.3389/fcell.2020.578036

    Article  PubMed  PubMed Central  Google Scholar 

  111. Garg SM, Vakili MR, Molavi O, Lavasanifar A (2017) Self-associating poly(ethylene oxide)-block-poly(alpha-carboxyl-epsilon-caprolactone) drug conjugates for the delivery of STAT3 inhibitor JSI-124: potential application in cancer immunotherapy. Mol Pharm 14(8):2570–2584. https://doi.org/10.1021/acs.molpharmaceut.6b01119

    Article  CAS  PubMed  Google Scholar 

  112. Molavi O, Ma Z, Mahmud A, Alshamsan A, Samuel J, Lai R, Kwon GS, Lavasanifar A (2008) Polymeric micelles for the solubilization and delivery of STAT3 inhibitor cucurbitacins in solid tumors. Int J Pharm 347(1–2):118–127. https://doi.org/10.1016/j.ijpharm.2007.06.032

    Article  CAS  PubMed  Google Scholar 

  113. Lv Q, Shen C, Li X, Shen B, Yu C, Xu P, Xu H, Han J, Yuan H (2015) Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for cucurbitacin B delivery. Drug Deliv 22(3):351–358. https://doi.org/10.3109/10717544.2013.876459

    Article  CAS  PubMed  Google Scholar 

  114. Cheng L, Xu PH, Shen BD, Shen G, Li JJ, Qiu L, Liu CY, Yuan HL, Han J (2015) Improve bile duct-targeted drug delivery and therapeutic efficacy for cholangiocarcinoma by cucurbitacin B loaded phospholipid complex modified with berberine hydrochloride. Int J Pharm 489(1–2):148–157. https://doi.org/10.1016/j.ijpharm.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  115. Tang L, Fu L, Zhu Z, Yang Y, Sun B, Shan W, Zhang Z (2018) Modified mixed nanomicelles with collagen peptides enhanced oral absorption of cucurbitacin B: preparation and evaluation. Drug Deliv 25(1):862–871. https://doi.org/10.1080/10717544.2018.1425773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Clericuzio M, Mella M, Vita-Finzi P, Zema M, Vidari G (2004) Cucurbitane triterpenoids from Leucopaxillus gentianeus. J Nat Prod 67(11):1823–1828. https://doi.org/10.1021/np049883o

    Article  CAS  PubMed  Google Scholar 

  117. Rodriguez N, Vasquez Y, Hussein AA, Coley PD, Solis PN, Gupta MP (2003) Cytotoxic cucurbitacin constituents from Sloanea zuliaensis. J Nat Prod 66(11):1515–1516. https://doi.org/10.1021/np0303106

    Article  CAS  PubMed  Google Scholar 

  118. Clericuzio M, Tabasso S, Bianco MA, Pratesi G, Beretta G, Tinelli S, Zunino F, Vidari G (2006) Cucurbitane triterpenes from the fruiting bodies and cultivated mycelia of Leucopaxillus gentianeus. J Nat Prod 69(12):1796–1799. https://doi.org/10.1021/np060213n

    Article  CAS  PubMed  Google Scholar 

  119. Kongtun S, Jiratchariyakul W, Kummalue T, Tan-ariya P, Kunnachak S, Frahm AW (2009) Cytotoxic properties of root extract and fruit juice of Trichosanthes cucumerina. Planta Med 75(8):839–842. https://doi.org/10.1055/s-0029-1185455

    Article  CAS  PubMed  Google Scholar 

  120. Tartarone A, Giordano P, Lerose R, Rodriquenz MG, Conca R, Aieta M (2017) Progress and challenges in the treatment of small cell lung cancer. Med Oncol 34(6):110. https://doi.org/10.1007/s12032-017-0966-6

    Article  PubMed  Google Scholar 

  121. Visconti R, Morra F, Guggino G, Celetti A (2017) The between now and then of lung cancer chemotherapy and immunotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms18071374

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wu G, Yan Y, Zhou Y, Duan Y, Zeng S, Wang X, Lin W, Ou C, Zhou J, Xu Z (2020) Sulforaphane: expected to become a novel anti-tumor compound. Oncol Res. https://doi.org/10.3727/096504020X15828892654385

    Article  PubMed  PubMed Central  Google Scholar 

  123. Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Elshaier Y, Halaweish F (2019) Design, synthesis and biological study of hybrid drug candidates of nitric oxide releasing cucurbitacin-inspired estrone analogs for treatment of hepatocellular carcinoma. Bioorg Chem 85:515–533. https://doi.org/10.1016/j.bioorg.2019.01.068

    Article  CAS  PubMed  Google Scholar 

  124. Marostica LL, de Barros ALB, Oliveira J, Salgado BS, Cassali GD, Leite EA, Cardoso VN, Lang KL, Caro MSB, Duran FJ, Schenkel EP, de Oliveira MC, Simoes CMO (2017) Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model. Toxicol Appl Pharmacol 329:272–281. https://doi.org/10.1016/j.taap.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  125. Marostica LL, Silva IT, Kratz JM, Persich L, Geller FC, Lang KL, Caro MS, Duran FJ, Schenkel EP, Simoes CM (2015) Synergistic antiproliferative effects of a new cucurbitacin B derivative and chemotherapy drugs on lung cancer cell line A549. Chem Res Toxicol 28(10):1949–1960. https://doi.org/10.1021/acs.chemrestox.5b00153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (82002239, 81803035, 81703036), and the Natural Science Foundation of Hunan Province, China (2020JJ5934, 2019JJ50932).

Author information

Authors and Affiliations

Authors

Contributions

ML, QY, SZ, ZX, ZG and YY were the main authors of the manuscript; ML and ZX contributed to the design and format of figures and tables; BP, YC, and YY revised the manuscript. All authors were responsible for the manuscript writing and approved the final manuscript.

Corresponding authors

Correspondence to Yuanliang Yan or Zhicheng Gong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yan, Q., Peng, B. et al. Use of cucurbitacins for lung cancer research and therapy. Cancer Chemother Pharmacol 88, 1–14 (2021). https://doi.org/10.1007/s00280-021-04265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04265-7

Keywords

Navigation