Skip to main content

Advertisement

Log in

The thioredoxin system and cancer therapy: a review

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH are key members of the Trx system that is involved in redox regulation and antioxidant defense. In recent years, several researchers have provided information about the roles of the Trx system in cancer development and progression. These reports indicated that many tumor cells express high levels of Trx and TrxR, which can be responsible for drug resistance in tumorigenesis. Inhibition of the Trx system may thus contribute to cancer therapy and improving chemotherapeutic agents. There are now a number of effective natural and synthetic inhibitors with chemotherapy applications possessing antitumor activity ranging from oxidative stress induction to apoptosis. In this article, we first described the features and functions of the Trx system and then reviewed briefly its correlations with cancer. Finally, we summarized the present knowledge about the Trx/TrxR inhibitors as anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radic Biol Med 31(11):1287–1312

    Article  CAS  PubMed  Google Scholar 

  2. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Phys Lung Cell Mol Phys 279(6):L1005–L1028

    CAS  Google Scholar 

  3. Cortassa S, O’Rourke B, Aon MA (2014) Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim Biophys Acta 183(2):287–295

    Article  CAS  Google Scholar 

  4. Gasdaska PY, Oblong JE, Cotgreave IA, Powis G (1994) The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta 1218(3):292–296

    Article  CAS  PubMed  Google Scholar 

  5. Karlenius TC, Tonissen KF (2010) Thioredoxin and cancer: a role for thioredoxin in all states of tumor oxygenation. Cancers 2(2):209–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawahara N, Tanaka T, Yokomizo A, Nanri H, Ono M, Wada M et al (1996) Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res 56(23):5330–5333

    CAS  PubMed  Google Scholar 

  7. Lim JY, Yoon SO, Hong SW, Kim JW, Choi SH, Cho JY (2012) Thioredoxin and thioredoxin-interacting protein as prognostic markers for gastric cancer recurrence. World J Gastroenterol 18(39):5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamura H, Bai J, Nishinaka Y, Ueda S, Sasada T, Ohshio G et al (2000) Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect Prev 24(1):53–60

    CAS  PubMed  Google Scholar 

  9. Raffel J, Bhattacharyya AK, Gallegos A, Cui H, Einspahr JG, Alberts DS et al (2003) Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. Transl Res 142(1):46–51

    CAS  Google Scholar 

  10. Arner ES, Holmgren A (eds) (2006) The thioredoxin system in cancer. Seminars in cancer biology. Elsevier, Amsterdam

    Google Scholar 

  11. Farina AR, Tacconelli A, Cappabianca L, Masciulli MP, Holmgren A, Beckett GJ et al (2001) Thioredoxin alters the matrix metalloproteinase/tissue inhibitors of metalloproteinase balance and stimulates human SK-N-SH neuroblastoma cell invasion. FEBS J 268(2):405–413

    CAS  Google Scholar 

  12. Oh JH, Chung AS, Steinbrenner H, Sies H, Brenneisen P (2004) Thioredoxin secreted upon ultraviolet A irradiation modulates activities of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in human dermal fibroblasts. Arch Biochem Biophys 423(1):218–226

    Article  CAS  PubMed  Google Scholar 

  13. Welsh SJ, Bellamy WT, Briehl MM, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62(17):5089–5095

    CAS  PubMed  Google Scholar 

  14. Tonissen KF, Di Trapani G (2009) Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 53(1):87–103

    Article  CAS  PubMed  Google Scholar 

  15. Urig S, Becker K (2006) On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin Cancer Biol 16(6):452–465

    Article  CAS  PubMed  Google Scholar 

  16. Arner ES (2009) Focus on mammalian thioredoxin reductases—important selenoproteins with versatile functions. Biochem Biophys Acta 1790(6):495–526

    Article  CAS  PubMed  Google Scholar 

  17. Lee S, Kim SM, Lee RT (2013) Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18(10):1165–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9(1):25–47

    Article  CAS  PubMed  Google Scholar 

  19. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54(1):237–271

    Article  CAS  PubMed  Google Scholar 

  20. Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. FEBS J 267(20):6102–6109

    Google Scholar 

  21. Gromer S, Urig S, Becker K (2004) The thioredoxin system—from science to clinic. Med Res Rev 24(1):40–89

    Article  CAS  PubMed  Google Scholar 

  22. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38(9):794–808

    Article  CAS  PubMed  Google Scholar 

  24. Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M et al (2001) Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 276(34):31567–31574

    Article  CAS  PubMed  Google Scholar 

  25. Go Y-M, Jones DP (2013) Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol 48(2):173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rigobello MP, Bindoli A (2010) Mitochondrial thioredoxin reductase: purification, inhibitor studies, and role in cell signaling. Methods in enzymology, vol 474. Elsevier, Amsterdam, pp 109–122

  27. Sun Q-A, Su D, Novoselov SV, Carlson BA, Hatfield DL, Gladyshev VN (2005) Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase. Biochemistry 44(44):14528–14537

    Article  CAS  PubMed  Google Scholar 

  28. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J et al (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178(1):179–185

    Article  CAS  PubMed  Google Scholar 

  29. Kim HY, Gladyshev VN (2005) Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol 3(12):e375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci 98(23):12920–12925

    Article  CAS  PubMed  Google Scholar 

  31. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biol Med 38(12):1543–1552

    Article  CAS  Google Scholar 

  32. Sengupta R, Holmgren A (1820) The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. Biochim Biophysica Acta 6:689–700

    Google Scholar 

  33. Sengupta R, Holmgren A (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 18(3):259–269

    Article  CAS  PubMed  Google Scholar 

  34. Mitsui A, Hirakawa T, Yodoi J (1992) Reactive oxygen-reducing and protein-refolding activities of adult T cell leukemia-derived factor/human thioredoxin. Biochem Biophys Res Commun 186(3):1220–1226

    Article  CAS  PubMed  Google Scholar 

  35. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30(1):421–455

    Article  CAS  PubMed  Google Scholar 

  36. Kang D-H (2002) Oxidative stress, DNA damage, and breast cancer. AACN Adv Crit Care 13(4):540–549

    Google Scholar 

  37. Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann NY Acad Sci 893(1):13–18

    Article  CAS  PubMed  Google Scholar 

  38. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  39. Peivandi Yazdi A, Razavi M, Sheikh S, Boroumand N, Salehi M, Hashemy SI (2019) Clinical trial assessment of intermittent and continuous infusion dose of N-acetylcysteine on redox status of the body in patients with sepsis admitted to the ICU. J Intensiv Care Med 885066618823152

  40. Peivandi Yazdi A, Bameshki A, Salehi M, Kazemzadeh G, Sharifian Razavi M, Rahmani S et al (2018) The effect of spinal and general anesthesia on serum lipid peroxides and total antioxidant capacity in diabetic patients with lower limb amputation surgery. Arch Bone Jt Surg 6(4):312–317

    PubMed  PubMed Central  Google Scholar 

  41. Ebrahimi S, Soltani A, Hashemy SI (2018) Oxidative stress in cervical cancer pathogenesis and resistance to therapy. J Cell Biochem

  42. Beiraghi-Toosi A, Askarian R, Sadrabadi Haghighi F, Safarian M, Kalantari F, Hashemy SI (2018) Burn-induced oxidative stress and serum glutathione depletion; a cross sectional study 2018. 6(1)

  43. Shoeibi A, Razmi N, Ghabeli Juibary A, Hashemy SI (2017) The evaluation and comparison of oxidative stress in hemorrhagic and ischemic stroke. Casp J Neurol Sci 3(11):206–213

    Article  Google Scholar 

  44. Taheri A, Tanipour MH, Khorasani ZK, Kiafar B, Layegh P, Hashemy SI (2016) Serum protein carbonyl and total antioxidant capacity levels in pemphigus vulgaris and bullous pemphigoid. Iran J Dermatol 18(4):156–162

    Google Scholar 

  45. Hashemy SI, Gharaei S, Vasigh S, Kargozar S, Alirezaei B, Keyhani FJ et al (2016) Oxidative stress factors and C-reactive protein in patients with oral lichen planus before and 2 weeks after treatment. J Oral Pathol Med 45(1):35–40

    Article  CAS  PubMed  Google Scholar 

  46. Amirchaghmaghi M, Hashemy SI, Alirezaei B, Jahed Keyhani F, Kargozar S, Vasigh S et al (2016) Evaluation of plasma isoprostane in patients with oral lichen planus. J Dent 17(1):21–25

    Google Scholar 

  47. Ebrahimi S, Hashemy SI (2019) MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr)

  48. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang R, Al-Lamki R, Bai L, Streb JW, Miano JM, Bradley J et al (2004) Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94(11):1483–1491

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Min W (2002) Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 90(12):1259–1266

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell DA, Morton SU, Fernhoff NB, Marletta MA (2007) Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci 104(28):11609–11614

    Article  CAS  PubMed  Google Scholar 

  52. Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN’s lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys 429(2):123–133

    Article  CAS  PubMed  Google Scholar 

  53. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K et al (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus a two-step mechanism of redox regulation of transcription factor NF-κB. J Biol Chem 274(39):27891–27897

    Article  CAS  PubMed  Google Scholar 

  54. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci 94(8):3633–3638

    Article  CAS  PubMed  Google Scholar 

  55. Powis G, Kirkpatrick DL (2007) Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 7(4):392–397

    Article  CAS  PubMed  Google Scholar 

  56. Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T et al (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 274(50):35809–35815

    Article  CAS  PubMed  Google Scholar 

  57. Holmgren A, Sengupta R (2010) The use of thiols by ribonucleotide reductase. Free Radic Biol Med 49(11):1617–1628

    Article  CAS  PubMed  Google Scholar 

  58. Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R (1992) Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem 267(34):24161–24164

    CAS  PubMed  Google Scholar 

  59. Bertini R, Howard OZ, Dong H-F, Oppenheim JJ, Bizzarri C, Sergi R et al (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med 189(11):1783–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bizzarri C, Holmgren A, Pekkari K, Chang G, Colotta F, Ghezzi P et al (2005) Requirements for the different cysteines in the chemotactic and desensitizing activity of human thioredoxin. Antioxid Redox Signal 7(9–10):1189–1194

    Article  CAS  PubMed  Google Scholar 

  61. Pekkari K, Goodarzi MT, Scheynius A, Holmgren A, Avila-Carino J (2005) Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK, and JNK. Blood 105(4):1598–1605

    Article  CAS  PubMed  Google Scholar 

  62. Hwang J, Suh H-W, Jeon YH, Hwang E, Nguyen LT, Yeom J et al (2014) The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun 5:2958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chung JW, Jeon JH, Yoon SR, Choi I (2006) Vitamin D3 upregulated protein 1 (VDUP1) is a regulator for redox signaling and stress-mediated diseases. J Dermatol 33(10):662–669

    Article  CAS  PubMed  Google Scholar 

  64. Nishinaka Y, Masutani H, Nakamura H, Yodoi J (2001) Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. Redox Rep 6(5):289–295

    Article  CAS  PubMed  Google Scholar 

  65. Nishiyama A, Masutani H, Nakamura H, Nishinaka Y, Yodoi J (2001) Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 52(1):29–33

    Article  CAS  PubMed  Google Scholar 

  66. Rundlöf A-K, Arnér ES (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Signal 6(1):41–52

    Article  PubMed  CAS  Google Scholar 

  67. Lorestani S, Hashemy SI, Mojarad M, Keyvanloo Shahrestanaki M, Bahari A, Asadi M et al (2018) Increased glutathione reductase expression and activity in colorectal cancer tissue samples: an investigational study in Mashhad. Iran Middle East J Cancer 9(2):99–104

    CAS  Google Scholar 

  68. Pakfetrat A, Dalirsani Z, Hashemy SI, Ghazi A, Mostaan LV, Anvari K et al (2018) Evaluation of serum levels of oxidized and reduced glutathione and total antioxidant capacity in patients with head and neck squamous cell carcinoma. J Cancer Res Ther 14(2):428–431

    CAS  PubMed  Google Scholar 

  69. Fujii S, Ozawa M. Expression and growth-promoting effect of adult T-cell leukemia-derived factor

  70. Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J et al (1990) Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein–Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci USA 87(21):8282–8286

    Article  CAS  PubMed  Google Scholar 

  71. Ceccarelli J, Delfino L, Zappia E, Castellani P, Borghi M, Ferrini S et al (2008) The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. Int J Cancer 123(8):1770–1778

    Article  CAS  PubMed  Google Scholar 

  72. Gallegos A, Gasdaska JR, Taylor CW, Paine-Murrieta GD, Goodman D, Gasdaska PY et al (1996) Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. Cancer Res 56(24):5765–5770

    CAS  PubMed  Google Scholar 

  73. Matthews JR, Wakasugi N, Virelizier J-L, Yodoi J, Hay RT (1992) Thiordoxin regulates the DNA binding activity of NF-χB by reduction of a disulphid bond involving cysteine 62. Nucl Acids Res 20(15):3821–3830

    Article  CAS  PubMed  Google Scholar 

  74. Wang C-Y, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS (1998) NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369

    Article  CAS  PubMed  Google Scholar 

  76. Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272(49):30615–30618

    Article  CAS  PubMed  Google Scholar 

  77. Gan L, Yang XL, Liu Q, Xu HB (2005) Inhibitory effects of thioredoxin reductase antisense RNA on the growth of human hepatocellular carcinoma cells. J Cell Biochem 96(3):653–664

    Article  CAS  PubMed  Google Scholar 

  78. Zheng X, Ma W, Sun R, Yin H, Lin F, Liu Y et al (2018) Butaselen prevents hepatocarcinogenesis and progression through inhibiting thioredoxin reductase activity. Redox Biol 14:237–249

    Article  CAS  PubMed  Google Scholar 

  79. Farina AR, Tacconelli A, Cappabianca L, DeSantis G, Gulino A, Mackay AR (2003) Thioredoxin inhibits microvascular endothelial capillary tubule formation. Exp Cell Res 291(2):474–483

    Article  CAS  PubMed  Google Scholar 

  80. Lincoln DT, Ali EE, Tonissen KF, Clarke FM (2003) The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res 23(3B):2425–2433

    CAS  PubMed  Google Scholar 

  81. Berggren M, Gallegos A, Gasdaska JR, Gasdaska PY, Warneke J, Powis G (1996) Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res 16(6B):3459–3466

    CAS  PubMed  Google Scholar 

  82. Kim HJ, Chae HZ, Kim YJ, Kim YH, Hwangs TS, Park EM et al (2003) Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues. Cell Biol Toxicol 19(5):285–298

    Article  CAS  PubMed  Google Scholar 

  83. Butler LM, Zhou X, Xu W-S, Scher HI, Rifkind RA, Marks PA et al (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci 99(18):11700–11705

    Article  CAS  PubMed  Google Scholar 

  84. Hashemy SI, Ungerstedt JS, Avval FZ, Holmgren A (2006) Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J Biol Chem 281(16):10691–10697

    Article  CAS  PubMed  Google Scholar 

  85. Kunkel MW, Kirkpatrick DL, Johnson JI, Powis G (1997) Cell line-directed screening assay for inhibitors of thioredoxin reductase signaling as potential anti-cancer drugs. Anticancer Drug Des 12(8):659–670

    CAS  PubMed  Google Scholar 

  86. Lu J, Chew E-H, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci 104(30):12288–12293

    Article  CAS  PubMed  Google Scholar 

  87. Nordberg J, Zhong L, Holmgren A, Arnér ES (1998) Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. J Biol Chem 273(18):10835–10842

    Article  CAS  PubMed  Google Scholar 

  88. Rigobello MP, Folda A, Baldoin MC, Scutari G, Bindoli A (2005) Effect of auranofin on the mitochondrial generation of hydrogen peroxide. Role of thioredoxin reductase. Free Radic Res 39(7):687–695

    Article  CAS  PubMed  Google Scholar 

  89. Witte A-B, Anestål K, Jerremalm E, Ehrsson H, Arnér ES (2005) Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic Biol Med 39(5):696–703

    Article  CAS  PubMed  Google Scholar 

  90. Kirkpatrick DL, Kuperus M, Dowdeswell M, Potier N, Donald LJ, Kunkel M et al (1998) Mechanisms of inhibition of the thioredoxin growth factor system by antitumor 2-imidazolyl disulfides. Biochem Pharmacol 55(7):987–994

    Article  CAS  PubMed  Google Scholar 

  91. Tan Y, Bi L, Zhang P, Wang F, Lin F, Ni W et al (2014) Thioredoxin-1 inhibitor PX-12 induces human acute myeloid leukemia cell apoptosis and enhances the sensitivity of cells to arsenic trioxide. Int J Clin Exp Pathol 7(8):4765

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kirkpatrick DL, Ehrmantraut G, Stettner S, Kunkel M, Powis G (1997) Redox active disulfides: the thioredoxin system as a drug target. Oncol Res Featur Preclin Clin Cancer Ther 9(6–7):351–356

    CAS  Google Scholar 

  93. Baker AF, Dragovich T, Tate WR, Ramanathan RK, Roe D, Hsu C-H et al (2006) The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147(2):83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2(3):235–243

    CAS  PubMed  Google Scholar 

  95. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1α and vascular endothelial growth factor formation 1. Mol Cancer Ther 2(3):235–243

    CAS  PubMed  Google Scholar 

  96. Kirkpatrick L, Dragovich T, Ramanathan R, Sharlow E, Chow S, Williams D et al (2004) Results from phase I study of PX-12, a thioredoxin inhibitor in patients with advanced solid malignancies. J Clin Oncol 22(14_suppl):3089

    Article  Google Scholar 

  97. Seidel C, Florean C, Schnekenburger M, Dicato M, Diederich M (2012) Chromatin-modifying agents in anti-cancer therapy. Biochimie 94(11):2264–2279

    Article  CAS  PubMed  Google Scholar 

  98. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92(15):1210–1216

    Article  CAS  PubMed  Google Scholar 

  99. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    Article  CAS  PubMed  Google Scholar 

  100. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 983(1):84–100

    Article  CAS  PubMed  Google Scholar 

  101. Wang Z-Y, Qin W, Yi F (2015) Targeting histone deacetylases: perspectives for epigenetic-based therapy in cardio-cerebrovascular disease. J Geriatr Cardiol 12(2):153

    PubMed  PubMed Central  Google Scholar 

  102. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci 95(6):3003–3007

    Article  CAS  PubMed  Google Scholar 

  103. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252

    Article  CAS  PubMed  Google Scholar 

  104. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671

    Article  CAS  PubMed  Google Scholar 

  105. Richon V (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer 95(S1):S2

    Article  CAS  PubMed Central  Google Scholar 

  106. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194

    Article  CAS  PubMed  Google Scholar 

  107. Rosato RR, Grant S (2004) Histone deacetylase inhibitors in clinical development. Expert Opin Investig Drugs 13(1):21–38

    Article  CAS  PubMed  Google Scholar 

  108. Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Investig Dermatol 125(5):1045–1052

    Article  CAS  PubMed  Google Scholar 

  109. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G et al (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(3):673–678

    Article  CAS  PubMed  Google Scholar 

  110. Tan J, Zhuang L, Jiang X, Yang KK, Karuturi KM, Yu Q (2006) Apoptosis signal-regulating kinase 1 is a direct target of E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through positive feedback regulation of E2F1 apoptotic activity. J Biol Chem

  111. Kerimova AA, Atalay M, Yusifov EY, Kuprin SP, Kerimov TM (2000) Antioxidant enzymes; possible mechanism of gold compound treatment in rheumatoid arthritis. Pathophysiology 7(3):209–213

    Article  CAS  PubMed  Google Scholar 

  112. Shaw CF (1999) Gold-based therapeutic agents. Chem Rev 99(9):2589–2600

    Article  CAS  Google Scholar 

  113. Milacic V, Fregona D, Dou QP (2008) Gold complexes as prospective metal-based anticancer drugs. Histol Histopathol 23(1):101–108

    CAS  PubMed  Google Scholar 

  114. Ronconi L, Giovagnini L, Marzano C, Bettìo F, Graziani R, Pilloni G et al (2005) Gold dithiocarbamate derivatives as potential antineoplastic agents: design, spectroscopic properties, and in vitro antitumor activity. Inorg Chem 44(6):1867–1881

    Article  CAS  PubMed  Google Scholar 

  115. Gromer S, Arscott LD, Williams CH, Schirmer RH, Becker K (1998) Human placenta thioredoxin reductase isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem 273(32):20096–20101

    Article  CAS  PubMed  Google Scholar 

  116. Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med 42(6):872–881

    Article  CAS  PubMed  Google Scholar 

  117. Rigobello MP, Scutari G, Boscolo R, Bindoli A (2002) Induction of mitochondrial permeability transition by auranofin, a Gold (I)-phosphine derivative. Br J Pharmacol 136(8):1162–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rigobello MP, Scutari G, Folda A, Bindoli A (2004) Mitochondrial thioredoxin reductase inhibition by gold (I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem Pharmacol 67(4):689–696

    Article  CAS  PubMed  Google Scholar 

  119. Rackham O, Nichols SJ, Leedman PJ, Berners-Price SJ, Filipovska A (2007) A gold (I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem Pharmacol 74(7):992–1002

    Article  CAS  PubMed  Google Scholar 

  120. Omata Y, Folan M, Shaw M, Messer RL, Lockwood PE, Hobbs D et al (2006) Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol In Vitro 20(6):882–890

    Article  CAS  PubMed  Google Scholar 

  121. Chen G-Q, Zhu J, Shi X-G, Ni J, Zhong H, Si G et al (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: as2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88(3):1052–1061

    Article  CAS  PubMed  Google Scholar 

  122. Douer D, Tallman MS (2005) Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol 23(10):2396–2410

    Article  CAS  PubMed  Google Scholar 

  123. Mayorga J, Richardson-Hardin C, Dicke KA (2002) Arsenic trioxide as effective therapy for relapsed acute promyelocytic leukemia. Clin J Oncol Nurs 6(6)

    Article  PubMed  Google Scholar 

  124. Ralph SJ (2008). Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 2008

  125. Miller WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62(14):3893–3903

    CAS  PubMed  Google Scholar 

  126. Terheyden P, Kortüm A-K, Schulze H-J, Durani B, Remling R, Mauch C et al (2007) Chemoimmunotherapy for cutaneous melanoma with dacarbazine and epifocal contact sensitizers: results of a nationwide survey of the German Dermatologic Co-operative Oncology Group. J Cancer Res Clin Oncol 133(7):437–444

    Article  CAS  PubMed  Google Scholar 

  127. Ma S, Caprioli RM, Hill KE, Burk RF (2003) Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro. J Am Soc Mass Spectrom 14(6):593–600

    Article  CAS  PubMed  Google Scholar 

  128. Arnér ES (1999) Superoxide production by dinitrophenyl-derivatized thioredoxin reductase–a model for the mechanism and correlation to immunostimulation by dinitrohalobenzenes. BioFactors 10(2–3):219–226

    Article  PubMed  Google Scholar 

  129. Cenas N, Nivinskas H, Anusevicius Z, Sarlauskas J, Lederer F, Arnér ES (2004) Interactions of quinones with thioredoxin reductase a challenge to the antioxidant role of the mammalian selenoprotein. J Biol Chem 279(4):2583–2592

    Article  CAS  PubMed  Google Scholar 

  130. Boulikas T, Vougiouka M (2004) Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. Oncol Rep 11(3):559–595

    CAS  PubMed  Google Scholar 

  131. Urig S, Becker K (eds) (2006) On the potential of thioredoxin reductase inhibitors for cancer therapy. Seminars in cancer biology. Elsevier, Amsterdam

    Google Scholar 

  132. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307

    Article  CAS  PubMed  Google Scholar 

  133. Arnér ES, Nakamura H, Sasada T, Yodoi J, Holmgren A, Spyrou G (2001) Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase, and glutaredoxin by cis-diamminedichloroplatinum (II) and its major metabolite, the glutathione-platinum complex. Free Radic Biol Med 31(10):1170–1178

    Article  PubMed  Google Scholar 

  134. Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A (2006) Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res 66(8):4410–4418

    Article  CAS  PubMed  Google Scholar 

  135. Soltani A, Salmaninejad A, Jalili‐Nik M, Soleimani A, Javid H, Hashemy SI, et al (2018) 5′‐Adenosine monophosphate‐activated protein kinase: a potential target for disease prevention by curcumin. J Cell Phys

  136. Boroumand N, Samarghandian S, Hashemy SI (2018) Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol 7(4):211–219

    Article  CAS  Google Scholar 

  137. Ghahremanlo A, Boroumand N, Ghazvini K, Hashemy SI (2018) Herbal medicine in oral lichen planus. Phytother Res

  138. Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin a novel molecular mechanism for its anticancer activity. J Biol Chem 280(26):25284–25290

    Article  CAS  PubMed  Google Scholar 

  139. Piaz F, Braca A, Belisario M, De Tommasi N (2010) Thioredoxin system modulation by plant and fungal secondary metabolites. Curr Med Chem 17(5):479–494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Isaac Hashemy.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, F., Soltani, A., Ghahremanloo, A. et al. The thioredoxin system and cancer therapy: a review. Cancer Chemother Pharmacol 84, 925–935 (2019). https://doi.org/10.1007/s00280-019-03912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03912-4

Keywords

Navigation