Skip to main content

Advertisement

Log in

Therapeutic drug monitoring of 5-fluorouracil

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

For over 50 years, 5-FU has played a critical role in the systemic chemotherapy of cancer patients. 5-FU serves as the main backbone of combination chemotherapy for patients with colorectal cancer in both the adjuvant and metastatic disease settings. Herein, we review the current status of 5-FU therapeutic drug monitoring (TDM) and discuss its potential role in the clinical practice setting.

Method

PubMed and abstracts from the American Society of Clinical Oncology were searched up through September 2015 for clinical data relating to 5-FU TDM.

Results

5-FU dosing has been typically determined by using body surface area (BSA). However, it is now well established that BSA-based 5-FU dosing is correlated with a wide variation of 5-FU systemic exposure. Pharmacokinetic (PK) studies of 5-FU systemic exposure have shown a wide range of interpatient variation of 5-FU plasma drug levels. Over the past 30 years, increasing efforts have been placed on optimizing 5-FU dosing with the main goals of increasing antitumor efficacy while reducing drug-associated toxicity. There is growing evidence to show that 5-FU dosing based on plasma 5-FU drug level is feasible and that 5-FU TDM can improve clinical outcomes by improving efficacy of 5-FU-based combination regimens and reducing toxicities.

Conclusion

Dose adjustment of 5-FU is feasible, and PK-based dosing can significantly improve clinical outcomes by reducing toxicities and improving efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beumer JH (2013) Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Ther 93:228–230

    Article  CAS  PubMed  Google Scholar 

  2. Bardin C, Veal G, Paci A, Chatelut E, Astier A, Leveque D, Widmer N, Beijnen J (2014) Therapeutic drug monitoring in cancer–are we missing a trick? Eur J Cancer 50:2005–2009

    Article  CAS  PubMed  Google Scholar 

  3. Beumer JH, Chu E, Salamone SJ (2012) Body-surface area-based chemotherapy dosing: appropriate in the 21st century? J Clin Oncol 30:3896–3897

    Article  PubMed  Google Scholar 

  4. Milano G, Etienne MC, Cassuto-Viguier E, Thyss A, Santini J, Frenay M, Renee N, Schneider M, Demard F (1992) Influence of sex and age on fluorouracil clearance. J Clin Oncol 10:1171–1175

    CAS  PubMed  Google Scholar 

  5. Gamelin E, Boisdron-Celle M, Guerin-Meyer V, Delva R, Lortholary A, Genevieve F, Larra F, Ifrah N, Robert J (1999) Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: a potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol 17:1105

    CAS  PubMed  Google Scholar 

  6. Chirstophidis N, Vajda FJ, Lucas I, Drummer O, Moon WJ, Louis WJ (1978) Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet 3:330–336

    Article  CAS  PubMed  Google Scholar 

  7. Collins JM, Dedrick RL, King FG, Speyer JL, Myers CE (1980) Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitoneal routes. Clin Pharmacol Ther 28:235–246

    Article  CAS  PubMed  Google Scholar 

  8. McDermott BJ, van den Berg HW, Murphy RJ (1982) Nonlinear pharmacokinetics for the elimination of 5-fluorouracil after intravenous administration in cancer patients. Cancer Chemother Pharmacol 9:173–178

    Article  CAS  PubMed  Google Scholar 

  9. van Kuilenburg AB, Maring JG (2013) Evaluation of 5-fluorouracil pharmacokinetic models and therapeutic drug monitoring in cancer patients. Pharmacogenomics 14:799–811

    Article  PubMed  Google Scholar 

  10. Thyss A, Milano G, Renee N, Vallicioni J, Schneider M, Demard F (1986) Clinical pharmacokinetic study of 5-FU in continuous 5-day infusions for head and neck cancer. Cancer Chemother Pharmacol 16:64–66

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida T, Araki E, Iigo M, Fujii T, Yoshino M, Shimada Y, Saito D, Tajiri H, Yamaguchi H, Yoshida S, Yoshino M, Ohkura H, Yoshimori M, Okazaki N (1990) Clinical significance of monitoring serum levels of 5-fluorouracil by continuous infusion in patients with advanced colonic cancer. Cancer Chemother Pharmacol 26:352–354

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein DA, Chen Q, Howard DH, Lipscomb J, Ayer T, Harvey D, El-Rayes BF, Flowers C (2014) Cost-effectiveness analysis of pharmacokinetic-guided (PK) 5-fluorouracil (5FU) when combined with leucovorin and oxaliplatin (FOLFOX) chemotherapy for metastatic colorectal cancer (mCRC). J Clin Oncol 32:6527

    Google Scholar 

  13. Goldstein DA, Chen Q, Ayer T, Howard DH, Lipscomb J, Harvey RD, El-Rayes BF, Flowers CR (2014) Cost effectiveness analysis of pharmacokinetically-guided 5-fluorouracil in FOLFOX chemotherapy for metastatic colorectal cancer. Clin Colorectal Cancer 13:219–225

    Article  PubMed  Google Scholar 

  14. van Staveren MC, Guchelaar HJ, van Kuilenburg AB, Gelderblom H, Maring JG (2013) Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J 13:389–395

    Article  PubMed  Google Scholar 

  15. Yen JL, McLeod HL (2007) Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur J Cancer 43:1011–1016

    Article  PubMed  Google Scholar 

  16. Saif MW, Choma A, Salamone SJ, Chu E (2009) Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst 101:1543–1552

    Article  CAS  PubMed  Google Scholar 

  17. Goel G, Lee JJ (2014) Pharmacokinetically guided dose adjustment of 5-FU-A critical element toward personalized medicine. Clin Colorectal Cancer 13:1–2

    Article  CAS  PubMed  Google Scholar 

  18. Hillcoat BL, McCulloch PB, Figueredo AT, Ehsan MH, Rosenfeld JM (1978) Clinical response and plasma levels of 5-fluorouracil in patients with colonic cancer treated by drug infusion. Br J Cancer 38:719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seitz JF, Cano JP, Rigault JP, Aubert C, Carcassonne Y (1983) Chemotherapy of extensive digestive cancers with 5-fluorouracil: relation between the clinical response and plasma clearance of the drug. Gastroenterol Clin Biol 7:374–380

    CAS  PubMed  Google Scholar 

  20. van Groeningen CJ, Pinedo HM, Heddes J, Kok RM, de Jong AP, Wattel E, Peters GJ, Lankelma J (1988) Pharmacokinetics of 5-fluorouracil assessed with a sensitive mass spectrometric method in patients on a dose escalation schedule. Cancer Res 48:6956–6961

    PubMed  Google Scholar 

  21. Trump DL, Egorin MJ, Forrest A, Willson JK, Remick S, Tutsch KD (1991) Pharmacokinetic and pharmacodynamic analysis of fluorouracil during 72-hour continuous infusion with and without dipyridamole. J Clin Oncol 9:2027–2035

    CAS  PubMed  Google Scholar 

  22. Milano G, Etienne MC, Renee N, Thyss A, Schneider M, Ramaioli A, Demard F (1994) Relationship between fluorouracil systemic exposure and tumor response and patient survival. J Clin Oncol 12:1291–1295

    CAS  PubMed  Google Scholar 

  23. Gamelin EC, Danquechin-Dorval EM, Dumesnil YF, Maillart PJ, Goudier MJ, Burtin PC, Delva RG, Lortholary AH, Gesta PH, Larra FG (1996) Relationship between 5-fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer 77:441–451

    Article  CAS  PubMed  Google Scholar 

  24. Wihlm J, Leveque D, Velten M, Klein T (1993) Pharmacokinetic monitoring with dosage adjustment of 5 fluorouracil administered by continuous infusion. Bull Cancer 80:439–445

    CAS  PubMed  Google Scholar 

  25. Saam J, Critchfield GC, Hamilton SA, Roa BB, Wenstrup RJ, Kaldate RR (2011) Body surface area-based dosing of 5-fluoruracil results in extensive interindividual variability in 5-fluorouracil exposure in colorectal cancer patients on FOLFOX regimens. Clin Colorectal Cancer 10:203–206

    Article  CAS  PubMed  Google Scholar 

  26. Kline CL, Sheikh HS, Scicchitano A, Gingrich R, Beachler C, Finnberg NK, Liao J, Sivik J, El-Deiry WS (2011) Preliminary observations indicate variable patterns of plasma 5-fluorouracil (5-FU) levels during dose optimization of infusional 5-FU in colorectal cancer patients. Cancer Biol Ther 12:557–568

    Article  CAS  PubMed  Google Scholar 

  27. Kaldate RR, Haregewoin A, Grier CE, Hamilton SA, McLeod HL (2012) Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. Oncologist 17:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gamelin E, Boisdron-Celle M, Delva R, Regimbeau C, Cailleux PE, Alleaume C, Maillet ML, Goudier MJ, Sire M, Person-Joly MC, Maigre M, Maillart P, Fety R, Burtin P, Lortholary A, Dumesnil Y, Picon L, Geslin J, Gesta P, Danquechin-Dorval E, Larra F, Robert J (1998) Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J Clin Oncol 16:1470–1478

    CAS  PubMed  Google Scholar 

  29. Kline CL, Schiccitano A, Zhu J, Beachler C, Sheikh H, Harvey HA, Mackley HB, McKenna K, Staveley-O’Carroll K, Poritz L, Messaris E, Stewart D, Sivik J, El-Deiry WS (2014) Personalized dosing via pharmacokinetic monitoring of 5-fluorouracil might reduce toxicity in early- or late-stage colorectal cancer patients treated with infusional 5-fluorouracil-based chemotherapy regimens. Clin Colorectal Cancer 13:119–126

    Article  PubMed  Google Scholar 

  30. Braiteh FS, Salamone SJ, Li Y, Courtney JB, Duda M, Diamond S, Miller MC (2014) Pharmacokinetic (PK)-guided optimization of 5-fluorouracil (5FU) exposure in colorectal cancer (CRC) patients: U.S.-based clinical practices experience. J Clin Oncol 32:3574

    Google Scholar 

  31. Santini J, Milano G, Thyss A, Renee N, Viens P, Ayela P, Schneider M, Demard F (1989) 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer. Br J Cancer 59:287–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fety R, Rolland F, Barberi-Heyob M, Hardouin A, Campion L, Conroy T, Merlin JL, Riviere A, Perrocheau G, Etienne MC, Milano G (1998) Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res 4:2039–2045

    CAS  PubMed  Google Scholar 

  33. Ychou M, Duffour J, Kramar A, Debrigode C, Gourgou S, Bressolle F, Pinguet F (2003) Individual 5-FU dose adaptation in metastatic colorectal cancer: results of a phase II study using a bimonthly pharmacokinetically intensified LV5FU2 regimen. Cancer Chemother Pharmacol 52:282–290

    Article  CAS  PubMed  Google Scholar 

  34. Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, Dorval E, Piot G, Morel A, Boisdron-Celle M (2008) Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 26:2099–2105

    Article  CAS  PubMed  Google Scholar 

  35. Capitain O, Asevoaia A, Boisdron-Celle M, Poirier AL, Morel A, Gamelin E (2012) Individual fluorouracil dose adjustment in FOLFOX based on pharmacokinetic follow-up compared with conventional body-area-surface dosing: a phase II, proof-of-concept study. Clin Colorectal Cancer 11:263–267

    Article  CAS  PubMed  Google Scholar 

  36. Patel JN, O’Neil BH, McLeod HL, Sherrill GB, Olijade O, Inzerillo JJ, Atluri P, Chay CH, Walko CM (2012) Investigating the utilization of pharmacokinetic-guided fluorouracil in colorectal cancer. J Clin Oncol 30:e13109

    Google Scholar 

  37. Patel JN, Deal AM, O’Neil BH, Ibrahim J, Sherrill GB, Davies JM, Bernard SA, Goldberg RM, Olajide OA, Atluri P, Inzerillo J, McLeod H, Walko C (2013) Application of pharmacokinetic (PK)-guided 5-fluorouracil (FU) in clinical practice. J Clin Oncol 31:abstract 2595

  38. Goel G, Chu E, Sun M, Meisner DJ, Lee JJ (2014) Pharmacokinetic (PK) guided optimization of 5-fluorouracil (5-FU) dosing in the treatment of patients with colorectal cancer (CRC). J Clin Oncol 32:e14561

    Google Scholar 

  39. Goel G, Sehgal R, Meisner DJ, Sun M, Pasricha G, Chu E, Lee JJ (2015) Therapeutic drug monitoring of 5-fluorouracil (5-FU) in the treatment of patients with colorectal cancer (CRC). J Clin Oncol 33:563

    Article  Google Scholar 

  40. Soh IPT, Mogro MJ, Soo RA, Pang A, Tan CS, Chuah B, Zee YK, Wong ALA, Ow SGW, Sundar R, Lim JSJ, Huang Y, Ling WHY, Yong W-P (2015) The optimization of 5-fluorouracil (5FU) dose by pharmacokinetic (PK) monitoring in Asian patients with advanced-stage gastrointestinal (GI) cancer. J Clin Oncol 33:770

    Google Scholar 

  41. Kunzmann V, Link K, Miller MC, Holdenrieder S, Bertsch T, Mueller L, Ko Y-D, Stoetzer OJ, Suttmann I, Braess J, Jaehde U, Roessler M, Moritz B, Kraff S, Fritsch A, Salamone SJ, Wilhelmet M (2015) A prospective, multi-center study of individualized, pharmacokinetically (PK)-guided dosing of 5-fluorouracil (5-FU) in metastatic colorectal cancer (mCRC) patients treated with weekly or biweekly 5-FU/oxaliplatin containing regimens. J Clin Oncol 33:3542

    Google Scholar 

  42. Murphy RF, Balis FM, Poplack DG (1987) Stability of 5-fluorouracil in whole blood and plasma. Clin Chem 33:2299–2300

    CAS  PubMed  Google Scholar 

  43. Breda M, Baratte S (2010) A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Anal Bioanal Chem 397:1191–1201

    Article  CAS  PubMed  Google Scholar 

  44. Beumer JH, Boisdron-Celle M, Clarke W, Courtney JB, Egorin MJ, Gamelin E, Harney RL, Hammett-Stabler C, Lepp S, Li Y, Lundell G, McMillin G, Milano G, Salamone SJ (2009) Multicenter evaluation of a novel nanoparticle immunoassay for 5-fluorouracil on the Olympus AU400 analyzer. Ther Drug Monit 31:688–694

    CAS  PubMed  Google Scholar 

  45. Cao D, Pizzorno D (2004) Uridine phosophorylase: an important enzyme in pyrimidine metabolism and fluoropyrimidine activation. Drugs Today (Barc) 40:431–443

    Article  CAS  Google Scholar 

  46. Renck D, Santos AA Jr, Machado P, Petersen GO, Lopes TG, Santos DS, Campos MM, Basso LA (2014) Human uridine phosphorylase-1 inhibitors: a new approach to ameliorate 5-fluorouracil-induced intestinal mucositis. Invest New Drugs 32:1301–1307

    Article  CAS  PubMed  Google Scholar 

  47. Temmink OH, de Bruin M, Laan AC, Turksma AW, Cricca S, Masterson AJ, Noordhuis P, Peters GJ (2006) The role of thymidine phosphorylase and uridine phosphorylase in (fluoro)pyrimidine metabolism in peripheral blood mononuclear cells. Int J Biochem Cell Biol 38:1759–1765

    Article  CAS  PubMed  Google Scholar 

  48. Cao D, Ziemba A, McCabe J, Yan R, Wan L, Kim B, Gach M, Flynn S, Pizzorno G (2011) Differential expression of uridine phosphorylase in tumors contributes to an improved fluoropyrimidine therapeutic activity. Mol Cancer Ther 10:2330–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walko CM, Lindley C (2005) Capecitabine: a review. Clin Ther 27:23–44

    Article  CAS  PubMed  Google Scholar 

  50. Hoff PM, Ansari R, Batist G, Cox J, Kocha W, Kuperminc M, Maroun J, Walde D, Weaver C, Harrison E, Burger HU, Osterwalder B, Wong AO, Wong R (2001) Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study. J Clin Oncol 19:2282–2292

    CAS  PubMed  Google Scholar 

  51. Van Cutsem E, Twelves C, Cassidy J, Allman D, Bajetta E, Boyer M, Bugat R, Findlay M, Frings S, Jahn M, McKendrick J, Osterwalder B, Perez-Manga G, Rosso R, Rougier P, Schmiegel WH, Seitz JF, Thompson P, Vieitez JM, Weitzel C, Harper P, Xeloda Colorectal Cancer Study Group (2001) Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 19:4097–4106

    PubMed  Google Scholar 

  52. Ducreux M, Bennouna J, Hebbar M, Ychou M, Lledo G, Conroy T, Adenis A, Faroux R, Rebischung C, Bergougnoux L (2011) Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/leucovorin plus oxaliplatin (FOLFOX-6) as first-line treatment for metastatic colorectal cancer. Int J Cancer 128:682–690

    Article  CAS  PubMed  Google Scholar 

  53. Van Cutsem E, Hoff PM, Harper P, Bukowski RM, Cunningham D, Dufour P, Graeven U, Lokich J, Madajewicz S, Maroun JA, Marshall JL, Mitchell EP, Perez-Manga G, Rougier P, Schmiegel W, Schoelmerich J, Sobrero A, Schilsky RL (2004) Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer 90:1190–1197

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cassidy J, Twelves C, Van Cutsem E, Hoff P, Bajetta E, Boyer M, Bugat R, Burger U, Garin A, Graeven U, McKendric J, Maroun J, Marshall J, Osterwalder B, Pérez-Manga G, Rosso R, Rougier P, Schilsky RL, Capecitabine Colorectal Cancer Study Group (2002) First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol 13:566–575

    Article  CAS  Google Scholar 

  55. Chu E, Schulman KL, Zelt S, Song X (2009) Costs associated with complications are lower with capecitabine than with 5-fluorouracil in patients with colorectal cancer. Cancer 115:1412–1423

    Article  CAS  PubMed  Google Scholar 

  56. Chu E, Cartwright TH (2008) Pharmacoeconomic benefits of capecitabine-based chemotherapy in metastatic colorectal cancer. J Clin Oncol 26:2224–2226

    Article  PubMed  Google Scholar 

  57. Chu E, Shi N, Wei W, Bendell JC, Cartwright T (2009) Costs associated with capecitabine or 5-fluorouracil monotherapy after surgical resection in patients with colorectal cancer. Oncology 77:244–253

    Article  PubMed  Google Scholar 

  58. Cassidy J, Douillard JY, Twelves C, McKendrick JJ, Scheithauer W, Bustova I, Johnson PG, Lesniewski-Kmak K, Jelic S, Founzilas G, Coxon F, Diaz-Rubio E, Maughan T, Malzyner A, Bertetto O, Beham A, Figer A, Dufour P, Patel KK, Cowell W, Garrison LP (2006) Pharmacoeconomic analysis of adjuvant oral capecitabine vs intravenous 5-FU/LV in Dukes’ C colon cancer: the X-ACT trial. Br J Cancer 94:1122–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shiroiwa T, Fukoda T, Shimozuma K, Ohashi Y, Tsutani K (2009) Cost-effectiveness analysis of capecitabine compared with bolus 5-fluorouracil/l-leucovorin for the adjuvant treatment of colon cancer in Japan. Pharmacoeconomics 27:597–608

    Article  PubMed  Google Scholar 

  60. Gieschke R, Burger HU, Reigner B, Blesch KS, Steimer JL (2003) Population pharmacokinetics and concentration-effect relationships of capecitabine metabolites in colorectal cancer patients. Br J Clin Pharmacol 55:252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vainchtein LD, Rosing H, Schellens JH, Beijnen JH (2010) A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma. Biomed Chromatogr 24:374–386

    CAS  PubMed  Google Scholar 

  62. Nakamura M, Makihara K, Onikubo T, Nakamura K, Uchibori K, Azuma S, Murotani K, Iwamoto S, Mishima H (2016) Personalized dose monitoring of fluorouracil and metabolites of capecitabine (XELODA) in colorectal cancer patients (PersonaX). J Clin Oncol 34:706

    Article  Google Scholar 

  63. Ploylearmsaeng SA, Fuhr U, Jetter A (2006) How may anticancer chemotherapy with fluorouracil be individualised? Clin Pharmacokinet 45:567–592

    Article  CAS  PubMed  Google Scholar 

  64. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB (1987) Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 47:2203–2206

    CAS  Google Scholar 

  65. Harris BE, Song R, Soong SJ, Diasio RB (1990) Relationship between dihydro- pyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 50:197–201

    CAS  PubMed  Google Scholar 

  66. DiPaolo A, Danesi R, Falcone A, Cionini L, Vannozzi F, Masi G, Allegrini G, Mini E, Bocci G, Conte PF, Del Tacca M (2001) Relationship between 5-fluorouracil disposition, toxicity, and dihydropyrimidine dehydrogenase activity in cancer patients. Ann Oncol 12:1301–1306

    Article  CAS  Google Scholar 

  67. van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, De Abreu RA, Maring JG, Vreken P, van Gennip AH (2000) Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 6:4705–4712

    PubMed  Google Scholar 

  68. Ezzeldin H, Diasio R (2004) Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin Colorectal Cancer 4:181–189

    Article  CAS  PubMed  Google Scholar 

  69. Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, Renée N, Schneider M, Demard F, Milano G (1994) Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol 12:2248–2253

    CAS  PubMed  Google Scholar 

  70. Diasio RB (2001) Clinical implications of dihydropyrimidine dehydrogenase on 5-FU pharmacology. Oncology 15:21–26

    CAS  PubMed  Google Scholar 

  71. Milano G, Etienne MC (1996) Individualizing therapy with 5-fluorouracil related to dihydropyrimidine dehydrogenase: theory and limits. Ther Drug Monit 18:335–340

    Article  CAS  Google Scholar 

  72. Boisdron-Celle M, Remaud G, Traore S, Poirier AL, Gamelin L, Morel A, Gamelin E (2007) 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett 249:271–282

    Article  CAS  PubMed  Google Scholar 

  73. Lu Z, Zhang R, Carpenter JT, Diasio RB (1998) Decreased dihydropyrimidine dehydrogenase activity in a population of patients with breast cancer: implication for 5-fluorouracil-based chemotherapy. Clin Cancer Res 4:325–329

    CAS  PubMed  Google Scholar 

  74. Johnson MR, Diasio RB (2001) Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5-fluorouracil. Adv Enzyme Regul 41:151–157

    Article  CAS  Google Scholar 

  75. Bocci G, Barbara C, Vannozzi F, Di Paolo A, Melosi A, Barsanti G, Allegrini G, Falcone A, Del Tacca M, Danesi R (2006) A pharmacokinetic-based test to prevent severe 5-fluorouracil toxicity. Clin Pharmacol Ther 80:384–395

    Article  CAS  PubMed  Google Scholar 

  76. Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, Diasio RB, Schwab M (2013) Clinical pharmacogenetics implementation consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther 94:640–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henricks LM, Lunenburg CA, Meulendijks D, Gelderblom H, Cats A, Swen JJ, Schellens JH, Guchelaar HJ (2015) Translating DPYD genotype into DPD phenotype: using the DPYD gene activity score. Pharmacogenomics 16:1277–1286

    Article  PubMed  Google Scholar 

  78. Capitain O, Boisdron-Celle M, Poirier AL, Abadie-Lacourtoisie S, Morel A, Gamelin E (2008) The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer. Pharmacogenomics J 8:256–267

    Article  CAS  PubMed  Google Scholar 

  79. Deenen MJ, Cats A, Sechterberger MK, Severens JL, Smits PHM, Bakker R, Mandigers CM, Soesan M, Beijnen JH, Schellens JHM (2011) Safety, pharmacokinetics (PK), and cost-effectiveness of upfront genotyping of DPYD in fluoropyrimidine therapy. J Clin Oncol 29:3606

    Google Scholar 

  80. Deenen MJ, Meulendijks D, Cats A, Sechterberger MK, Severens JL, Boot H, Smits PH, Rosing H, Mandigers CM, Soesan M, Beijnen JH, Schellens JH (2016) Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol 34:227–234

    Article  CAS  PubMed  Google Scholar 

  81. Sistonen J, Buchel B, Froehlich TK, Kummer D, Fontana S, Joerger M, van Kuilenburg AB, Largiader CR (2014) Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 15:1653–1666

    Article  CAS  Google Scholar 

  82. van Staveren MC, van Kuilenburg ABP, Guchelaar HJ, Meijer J, Punt CJA, de Jong RS, Gelderblom H, Maring JG (2015) Evaluation of an oral uracil loading test to identify DPD-deficient patients using a limited sampling strategy. Br J Clin Pharmacol 81:553–561

    Article  Google Scholar 

  83. Mattison LK, Ezzeldin H, Carpenter M, Modak A, Johnson MR, Diasio RB (2004) Rapid identification of dihydropyrimidine dehydrogenase deficiency by using a novel 2-13C-uracil breath test. Clin Cancer Res 10:2652–2658

    Article  CAS  PubMed  Google Scholar 

  84. Mattison LK, Fourie J, Hirao Y, Koga T, Desmond RA, King JR, Shimizu T, Diasio RB (2006) The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: pharmacokinetic relationship between expired 13CO2 and plasma [2-13C]dihydrouracil. Clin Cancer Res 12:549–555

    Article  CAS  PubMed  Google Scholar 

  85. Ezzeldin HH, Acosta EP, Mattison LK, Fourie J, Modak A, Diasio RB (2009) 13C-5-FU breath test current status and future directions: a comprehensive review. J Breath Res 3:047002

    Article  PubMed  Google Scholar 

  86. Becker R, Hollenbeak CS, Choma A, Kenny P, Salamone SJ (2013) Cost-effectiveness of pharmacokinetic dosing of 5-fluorouracil in metastatic colorectal cancer in the United Kingdom. Value in Health 16:A139

    Article  Google Scholar 

Download references

Acknowledgments

This review was supported in part by NCI UM1-CA186690. This project used the UPCI Cancer Pharmacokinetics and Pharmacodynamics Facility (CPPF), which was supported in part by NCI P30-CA147904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J., Beumer, J.H. & Chu, E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol 78, 447–464 (2016). https://doi.org/10.1007/s00280-016-3054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3054-2

Keywords

Navigation