Skip to main content

Advertisement

Log in

Platinum-based drugs: past, present and future

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of human neoplasms. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Much effort has been put into the development of new platinum anticancer complexes, but none of them has reached worldwide clinical application so far. Nedaplatin, lobaplatin and heptaplatin received only regional approval. Some new platinum complexes and platinum drug formulations are undergoing clinical trials. Here, we review the main classes of new platinum drug candidates, such as sterically hindered complexes, monofunctional platinum drugs, complexes with biologically active ligands, trans-configured and polynuclear platinum complexes, platinum(IV) prodrugs and platinum-based drug delivery systems. For each class of compounds, a detailed overview of the mechanism of action is given, the cytotoxicity is compared to that of the clinically used platinum drugs, and the clinical perspectives are discussed. A critical analysis of lessons to be learned is presented. Finally, a general outlook regarding future directions in the field of new platinum drugs is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wiltshaw E (1979) Cisplatin in the treatment of cancer. Platin Met Rev 23:90–98

    CAS  Google Scholar 

  2. Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov 1:285–295

    Article  CAS  PubMed  Google Scholar 

  3. Lebwohl D, Canetta R (1998) Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer 34:1522–1534

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883

    Article  CAS  PubMed  Google Scholar 

  5. Kalayda GV, Wagner CH, Jaehde U (2012) Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J Inorg Biochem 116:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Safaei R (2006) Role of copper transporters in the uptake and efflux of platinum containing drugs. Cancer Lett 234:34–39

    Article  CAS  PubMed  Google Scholar 

  7. Holzer AK, Manorek GH, Howell SB (2006) Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol 70:1390–1394

    Article  CAS  PubMed  Google Scholar 

  8. Zisowsky J, Koegel S, Leyers S, Devarakonda K, Kassack MU, Osmak M, Jaehde U (2007) Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem Pharmacol 73:298–307

    Article  CAS  PubMed  Google Scholar 

  9. Yang T, Chen M, Chen T, Thakur A (2015) Expression of the copper transporters hCtr1, ATP7A and ATP7B is associated with the response to chemotherapy and survival time in patients with resected non-small cell lung cancer. Oncol Lett 10:2584–2590

    PubMed  PubMed Central  Google Scholar 

  10. Kalayda GV, Wagner CH, Buss I, Reedijk J, Jaehde U (2008) Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer 8:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, Goodman M, Howell SB (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10:4661–4669

    Article  CAS  PubMed  Google Scholar 

  12. Nakayama K, Kanzaki A, Terada K, Mutoh M, Ogawa K, Sugiyama T, Takenoshita S, Itoh K, Yaegashi N, Miyazaki K, Neamati N, Takebayashi Y (2004) Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clin Cancer Res 10:2804–2811

    Article  CAS  PubMed  Google Scholar 

  13. Schneider V, Krieger ML, Bendas G, Jaehde U, Kalayda GV (2013) Contribution of intracellular ATP to cisplatin resistance of tumor cells. J Biol Inorg Chem 18:165–174

    Article  CAS  PubMed  Google Scholar 

  14. Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ (2015) Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 34:2993–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113–8127

    Article  CAS  PubMed  Google Scholar 

  16. Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  CAS  PubMed  Google Scholar 

  17. Yamasaki M, Makino T, Masuzawa T, Kurokawa Y, Miyata H, Takiguchi S, Nakajima K, Fujiwara Y, Matsuura N, Mori M, Doki Y (2011) Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br J Cancer 104:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377:649–652

    Article  CAS  PubMed  Google Scholar 

  19. Brown SJ, Kellett PJ, Lippard SJ (1993) Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261:603–605

    Article  CAS  PubMed  Google Scholar 

  20. Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A (1994) HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA 91:10394–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y (2002) Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res 62:4899–4902

    CAS  PubMed  Google Scholar 

  22. Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chaney SG (1998) The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 58:3579–3585

    CAS  PubMed  Google Scholar 

  23. Michels J, Vitale I, Senovilla L, Enot DP, Garcia P, Lissa D, Olaussen KA, Brenner C, Soria J, Castedo M, Kroemer G (2013) Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer. Cell Cycle 12:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirsch DG, Kastan MB (1998) Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 16:3158–3168

    CAS  PubMed  Google Scholar 

  25. Feldman DR, Bosl GJ, Sheinfeld J, Motzer RJ (2008) Medical treatment of advanced testicular cancer. JAMA 299:672–684

    Article  CAS  PubMed  Google Scholar 

  26. Peng HQ, Hogg D, Malkin D, Bailey D, Gallie BL, Bulbul M, Jewett M, Buchanan J, Goss PE (1993) Mutations of the p53 gene do not occur in testis cancer. Cancer Res 53:3574–3578

    CAS  PubMed  Google Scholar 

  27. Calvert AH, Harland SJ, Newell DR, Siddik ZH, Jones AC, McElwain TJ, Raju S, Wiltshaw E, Smith IE, Baker JM, Peckham MJ, Harrap KR (1982) Early clinical studies with cis-diammine-1,1-cyclobutane dicarboxylate platinum II. Cancer Chemother Pharmacol 9:140–147

    Article  CAS  PubMed  Google Scholar 

  28. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, De Geest K, Hartenbach EM, Baergen R (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21:3194–3200

    Article  CAS  PubMed  Google Scholar 

  29. Stewart DJ (2007) Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63:12–31

    Article  PubMed  Google Scholar 

  30. Kuwahara A, Yamamori M, Nishiguchi K, Okuno T, Chayahara N, Miki I, Tamura T, Kadoyama K, Inokuma T, Takemoto Y, Nakamura T, Kataoka K, Sakaeda T (2010) Effect of dose-escalation of 5-fluorouracil on circadian variability of its pharmacokinetics in Japanese patients with Stage III/IVa esophageal squamous cell carcinoma. Int J Med Sci 7:48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, Chen Y, Komori T, Gray JW, Chen X, Lippard SJ, Giacomini KM (2006) Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 66:8847–8857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tashiro A, Tatsumi S, Takeda R, Naka A, Matsuoka H, Hashimoto Y, Hatta K, Maeda K, Kamoshida S (2014) High expression of organic anion transporter 2 and organic cation transporter 2 is an independent predictor of good outcomes in patients with metastatic colorectal cancer treated with FOLFOX-based chemotherapy. Am J Cancer Res 4:528–536

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M, Abad A (2015) Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther 14:1767–1776

    Article  CAS  PubMed  Google Scholar 

  34. Di Francesco AM, Ruggiero A, Riccardi R (2002) Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell Mol Life Sci 59:1914–1927

    Article  PubMed  Google Scholar 

  35. Holford J, Raynaud F, Murrer BA, Grimaldi K, Hartley JA, Abrams M, Kelland LR (1998) Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473). Anticancer Drug Des 13:1–18

    CAS  PubMed  Google Scholar 

  36. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  CAS  PubMed  Google Scholar 

  37. Treat J, Schiller J, Quoix E, Mauer A, Edelman M, Modiano M, Bonomi P, Ramlau R, Lemarie E (2002) ZD0473 treatment in lung cancer: an overview of the clinical trial results. Eur J Cancer 38(Suppl 8):S13–S18

    Article  CAS  PubMed  Google Scholar 

  38. Chan BA, Coward Jermaine I G (2013) Chemotherapy advances in small-cell lung cancer. J Thorac Dis 5(Suppl 5):S565–S578

    PubMed  PubMed Central  Google Scholar 

  39. Buss I, Garmann D, Galanski M, Weber G, Kalayda GV, Keppler BK, Jaehde U (2011) Enhancing lipophilicity as a strategy to overcome resistance against platinum complexes? J Inorg Biochem 105:709–717

    Article  CAS  PubMed  Google Scholar 

  40. Abramkin SA, Jungwirth U, Valiahdi SM, Dworak C, Habala L, Meelich K, Berger W, Jakupec MA, Hartinger CG, Nazarov AA, Galanski M, Keppler BK (2010) {(1R,2R,4R)-4-methyl-1,2-cyclohexanediamine}oxalatoplatinum(II): a novel enantiomerically pure oxaliplatin derivative showing improved anticancer activity in vivo. J Med Chem 53:7356–7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jungwirth U, Xanthos DN, Gojo J, Bytzek AK, Körner W, Heffeter P, Abramkin SA, Jakupec MA, Hartinger CG, Windberger U, Galanski M, Keppler BK, Berger W (2012) Anticancer activity of methyl-substituted oxaliplatin analogs. Mol Pharmacol 81:719–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, Mendiboure J, Pignon J, Jooste V, van Endert P, Ducreux M, Zitvogel L, Piard F, Kroemer G (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491

    Article  CAS  PubMed  Google Scholar 

  43. Barnes KR, Kutikov A, Lippard SJ (2004) Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem Biol 11:557–564

    Article  CAS  PubMed  Google Scholar 

  44. Saha P, Descôteaux C, Brasseur K, Fortin S, Leblanc V, Parent S, Asselin E, Bérubé G (2012) Synthesis, antiproliferative activity and estrogen receptor α affinity of novel estradiol-linked platinum(II) complex analogs to carboplatin and oxaliplatin. Potential vector complexes to target estrogen-dependent tissues. Eur J Med Chem 48:385–390

    Article  CAS  PubMed  Google Scholar 

  45. Brasseur K, Leblanc V, Fabi F, Parent S, Descôteaux C, Bérubé G, Asselin E (2013) ERα-targeted therapy in ovarian cancer cells by a novel estradiol-platinum(II) hybrid. Endocrinology 154:2281–2295

    Article  CAS  PubMed  Google Scholar 

  46. van Themsche C, Parent S, Leblanc V, Descôteaux C, Simard A, Bérubé G, Asselin E (2009) VP-128, a novel oestradiol-platinum(II) hybrid with selective anti-tumour activity towards hormone-dependent breast cancer cells in vivo. Endocr Relat Cancer 16:1185–1195

    Article  PubMed  CAS  Google Scholar 

  47. Li H, Gao X, Liu R, Wang Y, Zhang M, Fu Z, Mi Y, Wang Y, Yao Z, Gao Q (2015) Glucose conjugated platinum(II) complex: antitumor superiority to oxaliplatin, combination effect and mechanism of action. Eur J Med Chem 101:400–408

    Article  CAS  PubMed  Google Scholar 

  48. Bowler BE, Lippard SJ (1986) Modulation of platinum antitumor drug binding to DNA by linked and free intercalators. Biochemistry 25:3031–3038

    Article  CAS  PubMed  Google Scholar 

  49. Temple MD, McFadyen WD, Holmes RJ, Denny WA, Murray V (2000) Interaction of cisplatin and DNA-targeted 9-aminoacridine platinum complexes with DNA. Biochemistry 39:5593–5599

    Article  CAS  PubMed  Google Scholar 

  50. Holmes RJ, McKeage MJ, Murray V, Denny WA, McFadyen WD (2001) cis-Dichloroplatinum(II) complexes tethered to 9-aminoacridine-4-carboxamides: synthesis and action in resistant cell lines in vitro. J Inorg Biochem 85:209–217

    Article  CAS  PubMed  Google Scholar 

  51. Suryadi J, Bierbach U (2012) DNA metalating-intercalating hybrid agents for the treatment of chemoresistant cancers. Chemistry 18:12926–12934

    Article  CAS  PubMed  Google Scholar 

  52. Kostrhunova H, Malina J, Pickard AJ, Stepankova J, Vojtiskova M, Kasparkova J, Muchova T, Rohlfing ML, Bierbach U, Brabec V (2011) Replacement of a thiourea with an amidine group in a monofunctional platinum-acridine antitumor agent. Effect on DNA interactions, DNA adduct recognition and repair. Mol Pharm 8:1941–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smyre CL, Saluta G, Kute TE, Kucera GL, Bierbach U (2011) Inhibition of DNA synthesis by a platinum-acridine hybrid agent leads to potent cell kill in non-small cell lung cancer. ACS Med Chem Lett 2:870–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnstone TC, Wilson JJ, Lippard SJ (2013) Monofunctional and higher-valent platinum anticancer agents. Inorg Chem 52:12234–12249

    Article  CAS  PubMed  Google Scholar 

  55. Lovejoy KS, Todd RC, Zhang S, McCormick MS, D’Aquino JA, Reardon JT, Sancar A, Giacomini KM, Lippard SJ (2008) cis-Diammine(pyridine)chloroplatinum(II), a monofunctional platinum(II) antitumor agent: uptake, structure, function, and prospects. Proc Natl Acad Sci USA 105:8902–8907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Johnstone TC, Park GY, Lippard SJ (2014) Understanding and improving platinum anticancer drugs–phenanthriplatin. Anticancer Res 34:471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lovejoy KS, Serova M, Bieche I, Emami S, D’Incalci M, Broggini M, Erba E, Gespach C, Cvitkovic E, Faivre S, Raymond E, Lippard SJ (2011) Spectrum of cellular responses to pyriplatin, a monofunctional cationic antineoplastic platinum(II) compound, in human cancer cells. Mol Cancer Ther 10:1709–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aris SM, Farrell NP (2009) Towards antitumor active trans-platinum compounds. Eur J Inorg Chem 2009:1293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V (2006) Transplatin is cytotoxic when photoactivated: enhanced formation of DNA cross-links. J Med Chem 49:7792–7798

    Article  CAS  PubMed  Google Scholar 

  60. Coluccia M, Boccarelli A, Mariggiò MA, Cardellicchio N, Caputo P, Intini FP, Natile G (1995) Platinum(II) complexes containing iminoethers: a trans platinum antitumour agent. Chem Biol Interact 98:251–266

    Article  CAS  PubMed  Google Scholar 

  61. Ma ES, Bates WD, Edmunds A, Kelland LR, Fojo T, Farrell N (2005) Enhancement of aqueous solubility and stability employing a trans acetate axis in trans planar amine platinum compounds while maintaining the biological profile. J Med Chem 48:5651–5654

    Article  CAS  PubMed  Google Scholar 

  62. Montero EI, Díaz S, González-Vadillo AM, Pérez JM, Alonso C, Navarro-Ranninger C (1999) Preparation and characterization of novel trans-[PtCl(2)(amine)(isopropylamine)] compounds: cytotoxic activity and apoptosis induction in ras-transformed cells. J Med Chem 42:4264–4268

    Article  CAS  PubMed  Google Scholar 

  63. Quiroga AG, Pérez JM, Alonso C, Navarro-Ranninger C, Farrell N (2006) Novel transplatinum(II) complexes with [N2O2] donor sets. Cellular pharmacology and apoptosis induction in Pam 212-ras cells. J Med Chem 49:224–231

    Article  CAS  PubMed  Google Scholar 

  64. Novakova O, Kasparkova J, Malina J, Natile G, Brabec V (2003) DNA-protein cross-linking by trans-[PtCl(2)(E-iminoether)(2)]. A concept for activation of the trans geometry in platinum antitumor complexes. Nucleic Acids Res 31:6450–6460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mlcouskova J, Kasparkova J, Suchankova T, Komeda S, Brabec V (2012) DNA conformation and repair of polymeric natural DNA damaged by antitumor azolato-bridged dinuclear Pt(II) complex. J Inorg Biochem 114:15–23

    Article  CAS  PubMed  Google Scholar 

  66. Kida N, Katsuda Y, Yoshikawa Y, Komeda S, Sato T, Saito Y, Chikuma M, Suzuki M, Imanaka T, Yoshikawa K (2010) Characteristic effect of an anticancer dinuclear platinum(II) complex on the higher-order structure of DNA. J Biol Inorg Chem 15:701–707

    Article  CAS  PubMed  Google Scholar 

  67. Mlcouskova J, Malina J, Novohradsky V, Kasparkova J, Komeda S, Brabec V (2012) Energetics, conformation, and recognition of DNA duplexes containing a major adduct of an anticancer azolato-bridged dinuclear Pt(II) complex. Biochim Biophys Acta 1820:1502–1511

    Article  CAS  PubMed  Google Scholar 

  68. Komeda S, Takayama H, Suzuki T, Odani A, Yamori T, Chikuma M (2013) Synthesis of antitumor azolato-bridged dinuclear platinum(II) complexes with in vivo antitumor efficacy and unique in vitro cytotoxicity profiles. Metallomics 5:461–468

    Article  CAS  PubMed  Google Scholar 

  69. Uemura M, Suzuki T, Nishio K, Chikuma M, Komeda S (2012) An in vivo highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex largely circumvents in vitro cisplatin resistance: two linkage isomers yield the same product upon reaction with 9-ethylguanine but exhibit different cytotoxic profiles. Metallomics 4:686–692

    Article  CAS  PubMed  Google Scholar 

  70. Komeda S, Lin Y, Chikuma M (2011) A tetrazolato-bridged dinuclear platinum(II) complex exhibits markedly high in vivo antitumor activity against pancreatic cancer. ChemMedChem 6:987–990

    Article  CAS  PubMed  Google Scholar 

  71. Perego P, Gatti L, Caserini C, Supino R, Colangelo D, Leone R, Spinelli S, Farrell N, Zunino F (1999) The cellular basis of the efficacy of the trinuclear platinum complex BBR 3464 against cisplatin-resistant cells. J Inorg Biochem 77:59–64

    Article  CAS  PubMed  Google Scholar 

  72. Kabolizadeh P, Ryan J, Farrell N (2007) Differences in the cellular response and signaling pathways of cisplatin and BBR3464 ([[trans-PtCl(NH3)(2)]2mu-(trans-Pt(NH3)(2)(H2N(CH2)(6)-NH2)2)]4+) influenced by copper homeostasis. Biochem Pharmacol 73:1270–1279

    Article  CAS  PubMed  Google Scholar 

  73. Summa N, Maigut J, Puchta R, van Eldik R (2007) Possible biotransformation reactions of polynuclear Pt(II) complexes. Inorg Chem 46:2094–2104

    Article  CAS  PubMed  Google Scholar 

  74. Kasparkova J, Zehnulova J, Farrell N, Brabec V (2002) DNA interstrand cross-links of the novel antitumor trinuclear platinum complex BBR3464. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair. J Biol Chem 277:48076–48086

    Article  CAS  PubMed  Google Scholar 

  75. Zehnulova J, Kasparkova J, Farrell N, Brabec V (2001) Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair of DNA intrastrand cross-links of novel antitumor trinuclear platinum complex BBR3464. J Biol Chem 276:22191–22199

    Article  CAS  PubMed  Google Scholar 

  76. Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK (2008) Antitumour metal compounds: more than theme and variations. Dalton Trans (2):183–194

  77. Kasparkova J, Fojta M, Farrell N, Brabec V (2004) Differential recognition by the tumor suppressor protein p53 of DNA modified by the novel antitumor trinuclear platinum drug BBR3464 and cisplatin. Nucleic Acids Res 32:5546–5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manzotti C, Pratesi G, Menta E, Di Domenico R, Cavalletti E, Fiebig HH, Kelland LR, Farrell N, Polizzi D, Supino R, Pezzoni G, Zunino F (2000) BBR 3464: a novel triplatinum complex, exhibiting a preclinical profile of antitumor efficacy different from cisplatin. Clin Cancer Res 6:2626–2634

    CAS  PubMed  Google Scholar 

  79. Jodrell DI, Evans TR, Steward W, Cameron D, Prendiville J, Aschele C, Noberasco C, Lind M, Carmichael J, Dobbs N, Camboni G, Gatti B, de Braud F (2004) Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma. Eur J Cancer 40:1872–1877

    Article  CAS  PubMed  Google Scholar 

  80. Peterson EJ, Menon VR, Gatti L, Kipping R, Dewasinghe D, Perego P, Povirk LF, Farrell NP (2015) Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm 12:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Benedetti BT, Peterson EJ, Kabolizadeh P, Martínez A, Kipping R, Farrell NP (2011) Effects of noncovalent platinum drug–protein interactions on drug efficacy: use of fluorescent conjugates as probes for drug metabolism. Mol Pharm 8:940–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prisecaru A, Molphy Z, Kipping RG, Peterson EJ, Qu Y, Kellett A, Farrell NP (2014) The phosphate clamp: sequence selective nucleic acid binding profiles and conformational induction of endonuclease inhibition by cationic Triplatin complexes. Nucleic Acids Res 42:13474–13487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Malina J, Farrell NP, Brabec V (2014) Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity. Angew Chem Int Ed Engl 53:12812–12816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wexselblatt E, Gibson D (2012) What do we know about the reduction of Pt(IV) pro-drugs? J Inorg Biochem 117:220–229

    Article  CAS  PubMed  Google Scholar 

  85. Hall MD, Mellor HR, Callaghan R, Hambley TW (2007) Basis for design and development of platinum(IV) anticancer complexes. J Med Chem 50:3403–3411

    Article  CAS  PubMed  Google Scholar 

  86. Kozubík A, Horváth V, Svihálková-Sindlerová L, Soucek K, Hofmanová J, Sova P, Kroutil A, Zák F, Mistr A, Turánek J (2005) High effectiveness of platinum(IV) complex with adamantylamine in overcoming resistance to cisplatin and suppressing proliferation of ovarian cancer cells in vitro. Biochem Pharmacol 69:373–383

    Article  PubMed  CAS  Google Scholar 

  87. Ang WH, Khalaila I, Allardyce CS, Juillerat-Jeanneret L, Dyson PJ (2005) Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J Am Chem Soc 127:1382–1383

    Article  CAS  PubMed  Google Scholar 

  88. Dhar S, Lippard SJ (2009) Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc Natl Acad Sci USA 106:22199–22204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Novohradsky V, Zerzankova L, Stepankova J, Vrana O, Raveendran R, Gibson D, Kasparkova J, Brabec V (2015) New insights into the molecular and epigenetic effects of antitumor Pt(IV)-valproic acid conjugates in human ovarian cancer cells. Biochem Pharmacol 95:133–144

    Article  CAS  PubMed  Google Scholar 

  90. Butler JS, Sadler PJ (2013) Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 17:175–188

    Article  CAS  PubMed  Google Scholar 

  91. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  CAS  PubMed  Google Scholar 

  92. Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boulikas T (2009) Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 18:1197–1218

    Article  CAS  PubMed  Google Scholar 

  94. Veal GJ, Griffin MJ, Price E, Parry A, Dick GS, Little MA, Yule SM, Morland B, Estlin EJ, Hale JP, Pearson AD, Welbank H, Boddy AV (2001) A phase I study in paediatric patients to evaluate the safety and pharmacokinetics of SPI-77, a liposome encapsulated formulation of cisplatin. Br J Cancer 84:1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim ES, Lu C, Khuri FR, Tonda M, Glisson BS, Liu D, Jung M, Hong WK, Herbst RS (2001) A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 34:427–432

    Article  CAS  PubMed  Google Scholar 

  96. Perez-Soler R, Khokhar AR, Lopez-Berestein G (1987) Treatment and prophylaxis of experimental liver metastases of M5076 reticulosarcoma with cis-bis-neodecanoato-trans-R, R-1,2-diaminocyclohexaneplatinum(II) encapsulated in multilamellar vesicles. Cancer Res 47:6462–6466

    CAS  PubMed  Google Scholar 

  97. Stathopoulos GP, Boulikas T, Kourvetaris A, Stathopoulos J (2006) Liposomal oxaliplatin in the treatment of advanced cancer: a phase I study. Anticancer Res 26:1489–1493

    CAS  PubMed  Google Scholar 

  98. Hamelers IH, Staffhorst RW, Voortman J, de Kruijff B, Reedijk J, van Bergen en Henegouwen PM, de Kroon AI (2009) High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis. Clin Cancer Res 15:1259–1268

    Article  CAS  PubMed  Google Scholar 

  99. Staffhorst RW, van der Born K, Erkelens CA, Hamelers IH, Peters GJ, Boven E, de Kroon AI (2008) Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. Anticancer Drugs 19:721–727

    Article  CAS  PubMed  Google Scholar 

  100. Rademaker-Lakhai JM, Terret C, Howell SB, Baud CM, De Boer RF, Pluim D, Beijnen JH, Schellens JH, Droz J (2004) A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res 10:3386–3395

    Article  CAS  PubMed  Google Scholar 

  101. Nowotnik DP, Cvitkovic E (2009) ProLindac (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev 61:1214–1219

    Article  CAS  PubMed  Google Scholar 

  102. Apps MG, Choi Eugene H Y, Wheate NJ (2015) The state-of-play and future of platinum drugs. Endocr Relat Cancer 22:R219–R233

    PubMed  Google Scholar 

  103. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776

    Article  CAS  PubMed  Google Scholar 

  104. Haririan I, Alavidjeh MS, Khorramizadeh MR, Ardestani MS, Ghane ZZ, Namazi H (2010) Anionic linear-globular dendrimer-cis-platinum(II) conjugates promote cytotoxicity in vitro against different cancer cell lines. Int J Nanomed 5:63–75

    Article  CAS  Google Scholar 

  105. Ajima K, Yudasaka M, Murakami T, Maigné A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Mol Pharm 2:475–480

    Article  CAS  PubMed  Google Scholar 

  106. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129:8438–8439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guven A, Rusakova IA, Lewis MT, Wilson LJ (2012) Cisplatin@ US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33:1455–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  PubMed  Google Scholar 

  110. Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tilby MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y, Kataoka K, Nishiya T (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen HH, Chen W, Liang Z, Tsai W, Long Y, Aiba I, Fu S, Broaddus R, Liu J, Feun LG, Savaraj N, Kuo MT (2015) Targeting drug transport mechanisms for improving platinum-based cancer chemotherapy. Expert Opin Ther Targets 19:1307–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, Abrão Miziara JE, Balint B, de Marinis F, Keller A, Arén O, Csollak M, Albert I, Barrios CH, Grossi F, Krzakowski M, Cupit L, Cihon F, Dimatteo S, Hanna N (2010) Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol 28:1835–1842

    Article  CAS  PubMed  Google Scholar 

  113. Miller K, Morant R, Stenzl A, Zuna I, Wirth M (2016) A Phase II Study of the Central European Society of Anticancer-Drug Research (CESAR) Group: results of an Open-Label Study of Gemcitabine plus Cisplatin with or without concomitant or sequential gefitinib in patients with advanced or metastatic transitional cell carcinoma of the urothelium. Urol Int 96:5–13

    Article  CAS  PubMed  Google Scholar 

  114. Yu H, Zhang J, Wu X, Luo Z, Wang H, Sun S, Peng W, Qiao J, Feng Y, Wang J, Chang J (2014) A phase II randomized trial evaluating gefitinib intercalated with pemetrexed/platinum chemotherapy or pemetrexed/platinum chemotherapy alone in unselected patients with advanced non-squamous non-small cell lung cancer. Cancer Biol Ther 15:832–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Balmaña J, Tung NM, Isakoff SJ, Graña B, Ryan PD, Saura C, Lowe ES, Frewer P, Winer E, Baselga J, Garber JE (2014) Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol 25:1656–1663

    Article  PubMed  Google Scholar 

  116. Novello S, Besse B, Felip E, Barlesi F, Mazieres J, Zalcman G, von Pawel J, Reck M, Cappuzzo F, Ferry D, Carcereny E, Santoro A, Garcia-Ribas I, Scagliotti G, Soria J (2014) A phase II randomized study evaluating the addition of iniparib to gemcitabine plus cisplatin as first-line therapy for metastatic non-small-cell lung cancer. Ann Oncol 25:2156–2162

    Article  CAS  PubMed  Google Scholar 

  117. Nagao S, Fujiwara K, Imafuku N, Kagawa R, Kozuka Y, Oda T, Maehata K, Ishikawa H, Koike H, Aotani E, Kohno I (2005) Difference of carboplatin clearance estimated by the Cockroft-Gault, Jelliffe, Modified-Jelliffe, Wright or Chatelut formula. Gynecol Oncol 99:327–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ulrich Jaehde (Institute of Pharmacy, University of Bonn) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna V. Kalayda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilruba, S., Kalayda, G.V. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77, 1103–1124 (2016). https://doi.org/10.1007/s00280-016-2976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-2976-z

Keywords

Navigation