Skip to main content
Log in

Relevance of Using Platinum-Containing Antitumor Compounds (A Review)

  • SEARCH FOR NEW DRUGS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This review describes various platinum complexes including heterocyclic fragments such as gemcitabine, satraplatin, fuplatin, etc. and covers data published over the last 20 years concerning the effectiveness of using platinum-containing drugs in antitumor therapy. Preparations of various genesis, structure, and intracellular conformations and possible mechanisms of action, biochemical properties, and some physicochemical parameters of these compounds are considered. Adducts of different nature and geometric structure have different intracellular repair reactions, cleavage of functional groups, and interaction with untwisted DNA in affected cells. In turn, molecules capable of targeted drug delivery of substances such as fullerenes and their water-soluble derivatives fullerenols as well as polymeric compounds (in particular, cucurbituril) used in the synthesis of platinum-containing biologically active compounds are gaining increased interest. Thus, research is also being conducted on selective targeted delivery of platinum-containing series with reduced toxicity in parallel with the search for the most effective compounds. This review cites data on biological modeling of the effectiveness, mechanism, and kinetics of active platinum-containing drugs. An important aspect is that all antitumor substances are synthesized under rational accessible conditions and have logical pathways for continuing work on the synthesis of analogs capable of stimulating the apoptosis of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Siegel, K. D. Miller, and A. Jemal, Ca-Cancer J. Clin., 70(1), 7 – 30 (2020); https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Z. M. Sarkisyan, Zh. Obshch. Khim., 90(10), 1522 – 1532 (2020); https://doi.org/10.31857/S0044460X20100078.

    Article  Google Scholar 

  3. Z. M. Sarkisyan, Zh. Obshch. Khim., 90(9), 1460 – 1463 (2020); https://doi.org/10.31857/S0044460X2009019X.

    Article  Google Scholar 

  4. D. Gibson, J. Inorg. Biochem., 217, 111353 (2021).

  5. B. Rosenberg, L. Van Camp, and T. Krigas, Nature, 205(4972), 698 – 699 (1965); https://doi.org/10.1038/205698a0.

  6. B. Rosenberg, L. Vancamp, J. E. Trosko, et al., Nature, 222(5191), 385 – 386 (1969); https://doi.org/10.1038/222385a0.

    Article  CAS  PubMed  Google Scholar 

  7. E. Wong and C. M. Giandomenico, Chem. Rev., 99(9), 2451 – 2466 (1999); https://doi.org/10.1021/cr980420v

    Article  CAS  PubMed  Google Scholar 

  8. A. F. Burnett, L. D. Roman, A. A. Garcia, et al., Gynecol. Oncol., 76(1), 63 – 66 (2000); https://doi.org/10.1006/gyno.1999.5657.

    Article  CAS  Google Scholar 

  9. J. B. Sorensen, L. E. Stenbygaard, P. Dombernowsky, et al., Ann. Oncol., 10(9), 1043 – 1049 (1999); https://doi.org/10.1023/a:1008352900990.

    Article  CAS  PubMed  Google Scholar 

  10. R. R. Plentz and N. P. Malek, Visc. Med., 32(6), 427 – 430 (2016); https://doi.org/10.1159/000453084.

    Article  PubMed  PubMed Central  Google Scholar 

  11. V. Heinemann, H. Wilke, H.-G. Mergenthaler, et al., Ann. Oncol., 11(11), 1399 – 1403 (2000); https://doi.org/10.1023/a:1026595525977.

    Article  CAS  PubMed  Google Scholar 

  12. J. Holford, S. Y. Sharp, B. A. Murrer, et al., Br. J. Cancer, 77(3), 366 – 373 (1998); https://doi.org/10.1038/bjc.1998.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Zhang, X. Wang, C. Tu, et al., J. Med. Chem., 46(16), 3502 – 3507 (2003); https://doi.org/10.1021/jm020593j.

    Article  CAS  PubMed  Google Scholar 

  14. R. Zhang, X.-Q. Son, R.-P. Liu, et al., J. Med. Chem., 62, 4543 – 4554 (2019); https://doi.org/10.1021/acs.jmedchem.9b00128.

    Article  CAS  PubMed  Google Scholar 

  15. Z. Dong,W. Zheng, and Z. Xu, J. Appl. Polym. Sci., 130, No. 2, 927 – 932 (2013); https://doi.org/10.1002/app.39247.

    Article  CAS  Google Scholar 

  16. Y. Shi, S.-A. Liu, D. J. Kerwood, et al., J. Inorg. Biochem., 107(1), 6 – 14 (2012); https://doi.org/10.1016/j.jinorgbio.2011.10.012.

    Article  CAS  PubMed  Google Scholar 

  17. Y.-R. Zheng, K. Suntharalingam, T. C. Johnstone, et al., J. Am. Chem. Soc., 136(24), 8790 – 8798 (2014); https://doi.org/10.1021/ja5038269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. W. Johnson, M. W. Burgess, V. Murray, et al., BMC Cancer, 18(1), 1284 (2018); https://doi.org/10.1186/s12885-018-5194-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. K. J. Chen, P. Kappen, and T. W. Hambley, Metallomics, 11(3), 686 – 695 (2019); https://doi.org/10.1039/c9mt00003h.

    Article  CAS  PubMed  Google Scholar 

  20. J. P. Ceron-Carrasco, Int. J. Mol. Sci., 21(13), 4741 (2020); https://doi.org/10.3390/ijms21134741.

    Article  CAS  PubMed Central  Google Scholar 

  21. B. Liskova, L. Zerzankova, O. Novakova, et al., Chem. Res. Toxicol., 25(2), 500 – 509 (2012).

    Article  CAS  Google Scholar 

  22. C. Marzano, S. M. Sbovata, V. Gandin, et al., J. Inorg. Biochem., 103(8), 1113 – 1119 (2009).

    Article  CAS  Google Scholar 

  23. P. D. Braddock, T. A. Connors, M. Jones, et al., Chem. Biol. Int., 11(3), 145 – 161 (1975).

    Article  CAS  Google Scholar 

  24. A. P. Silverman, W. Bu, S. M. Cohen, et al., J. Biol. Chem., 277(51), 49743 – 49749 (2002).

    Article  CAS  Google Scholar 

  25. Z. Xu, Z. Wang, S.-M. Yiu, and G. Zhu, Dalton Trans., 44(46), 19918 – 19926 (2015); https://doi.org/10.1039/c5dt03101j.

    Article  CAS  PubMed  Google Scholar 

  26. O. E. Polozhentsev, V. K. Kochkina, V. L. Mazalova, et al., Zh. Strukt. Khim., 57(7), 1558 – 1565 (2016); https://doi.org/10.15372/JSC20160724.

  27. D. A. Ginevskii, P. V. Izhevskii, I. N. Sheino, et al., Med. Genet. (Moscow, Russ. Fed.), 19(6), 106 – 108 (2020); https://doi.org/10.25557/2073-7998.2020.06.106-108.

  28. V. A. Semenov, D. O. Samul’tsev, and L. B. Krivdin, Sovrem. Tekhnol. Nauchno-Tekh. Prog., 1, 83 – 85 (2019); https://doi.org/10.36629/2686-9896/2019-1-1-83-85.

  29. A. L. Pushkarchuk, in: Abstracts of Papers of Fullerenes and Nanostructures in Condensed Media [in Russian], Minsk, (2021), pp. 182 – 187.

  30. S. A. Antipov, T. A. Fedushchak, O. V. Kokorev, et al., Byull. Sib. Med., 9(1), 9 – 16 (2010); https://doi.org/10.20538/1682-0363-2010-1-9-16.

  31. V. Novohradsky, I. Zanellato, C. Marzano, et al., Sci. Rep., 7(1), 3751 (2017); https://doi.org/10.1038/s41598-017-03864-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. V. Novohradsky, L. Zerzankova, J. Stepankova, et al., Biochem. Pharmacol., 95(3), 133 – 144 (2015); https://doi.org/10.1016/j.bcp.2015.04.003.

  33. V. Novohradsky, L. Zerzankova, J. Stepankova, et al., J. Inorg. Biochem., 140(7), 72 – 79 (2014); https://doi.org/10.1016/j.jinorgbio.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  34. M. Raja, R. Goddard, and K. Porschke, Inorg. Chem., 56(11), 6712 – 6724 (2017); https://doi.org/10.1021/acs.inorgchem.7b00836.

  35. D. P. Nowotnik and E. Cvitkovic, Adv. Drug Deliv. Rev., 61(13), 1214 – 1219 (2009); https://doi.org/10.1016/j.addr.2009.06.004.

    Article  CAS  PubMed  Google Scholar 

  36. M. Campone, J. M. Rademaker-Lakhai, J. Bennouna, et al., Cancer Chemother. Pharmacol., 60(4), 523 – 533 (2007); https://doi.org/10.1007/s00280-006-0397-0.

    Article  CAS  Google Scholar 

  37. N. J. Wheate, A. I. Day, R. J. Blanch, et al., Chem. Commun., 12, 1424 (2004); https://doi.org/10.1039/b404358h.

    Article  CAS  Google Scholar 

  38. A. Day, A. P. Arnold, R. J. Blanch, et al., J. Org. Chem., 66(24), 8094 – 8100 (2001); https://doi.org/10.1021/jo015897c.

    Article  CAS  PubMed  Google Scholar 

  39. N. J. Wheate, D. P. Buck, A. I. Day, et al., Dalton Trans., 21(3), 451 – 458 (2006).

    Article  Google Scholar 

  40. D. Kushev, G. Gorneva, S. Taxirov, et al., Biol. Chem., 380(11), 1287 – 1294 (1999); https://doi.org/10.1515/bc.1999.164.

    Article  CAS  PubMed  Google Scholar 

  41. A. S. Kritchenkov, Ya. M. Stanishevskii, and Yu. A. Skorik, Khim-farm. Zh., 53(1), 8 – 16 (2019); Pharm. Chem. J., 53(1), 6 – 14 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Sarkisyan.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 6, pp. 3 – 9, June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkisyan, Z.M., Shkutina, I.V., Srago, I.A. et al. Relevance of Using Platinum-Containing Antitumor Compounds (A Review). Pharm Chem J 56, 729–735 (2022). https://doi.org/10.1007/s11094-022-02702-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02702-2

Keywords

Navigation