Skip to main content

Advertisement

Log in

Are pharmacogenomic biomarkers an effective tool to predict taxane toxicity and outcome in breast cancer patients? Literature review

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is a heterogeneous disease, characterized by various molecular phenotypes that correlate with different prognosis and response to treatments. Taxanes are some of the most active chemotherapeutic agents for breast cancer; however, their utilization is limited, due to hematologic and cumulative neurotoxicity on treated patients. To understand why only some patients experience severe adverse effects and why patients respond and develop resistance with different rates to taxane therapy, the metabolic pathways of these drugs should be completely unraveled. The variant forms of several genes, related to taxane pharmacokinetics, can be indicative markers of clinical parameters, such as toxicity or outcome.

Methods

The search of the data has been conducted through PubMed database, presenting clinical data, clinical trials and basic research restricted to English language until June 2015.

Results

We studied the literature in order to find any possible association between the major pharmacogenomic variants and specific taxane-related toxicity and patient outcome. We found that the data of these studies are sometimes discordant, due to both the small number of enrolled patients and the heterogeneity of the examined population.

Conclusions

Among all analyzed genes, only CYP1B1 and ABCB1 resulted the strongest candidates to become biomarkers of clinical response to taxane therapy in breast cancer, although their utilization still remains an experimental procedure. In the future, greater studies on genetic polymorphisms should be performed in order to identify differentiating signatures for patients with higher toxicity and with resistant or responsive outcome, before the administration of taxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foukakis T, Fornander T, Lekberg T, Hellborg H, Adolfsson J, Bergh J (2011) Age-specific trends of survival in metastatic breast cancer: 26 years longitudinal data from a population-based cancer registry in Stockholm, Sweden. Breast Cancer Res Treat 130:553–560

    Article  PubMed  Google Scholar 

  2. Henningsson A, Sparreboom A, Sandstrom M et al (2003) Population pharmacokinetic modeling of unbound and total plasma concentrations of paclitaxel in cancer patients. Eur J Cancer 39:1105–1114

    Article  CAS  PubMed  Google Scholar 

  3. Oshiro C, Marsh S, McLeod H, Carrillo M, Klein T, Altman R (2009) Taxane pathway. Pharmacogenet Genomics 19:979–983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sparano JA, Wang M, Martino S et al (2008) Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358:1663–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Di Leo A, Gomez HL, Aziz Z et al (2008) Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J Clin Oncol 26:5544–5552

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ten Tije AJ, Verweij J, Loos WJ, Sparreboom A (2003) Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clin Pharmacokinet 42:665–685

    Article  PubMed  Google Scholar 

  7. Gelderblom H, Verweij J, van Zomeren DM et al (2002) Influence of Cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res 8:1237–1241

    CAS  PubMed  Google Scholar 

  8. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  CAS  PubMed  Google Scholar 

  9. Boulanger J, Boursiquot JN, Cournoyer G et al (2014) Management of hypersensitivity to platinum- and taxane-based chemotherapy: cepo review and clinical recommendations. Curr Oncol 21:e630–e641

    Article  PubMed Central  PubMed  Google Scholar 

  10. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol. doi:10.1016/j.critrevonc.2015.04.011

    PubMed  Google Scholar 

  11. Verschraegen CF, Sittisomwong T, Kudelka AP et al (2000) Docetaxel for patients with paclitaxel-resistant Mullerian carcinoma. J Clin Oncol 18:2733–2739

    CAS  PubMed  Google Scholar 

  12. Van Zuylen L, Verweij J, Sparreboom A (2001) Role of formulation vehicles in taxane pharmacology. Invest New Drugs 19:125–141

    Article  PubMed  Google Scholar 

  13. McLeod HL, Evans WE (2001) Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol 41:101–121

    Article  CAS  PubMed  Google Scholar 

  14. Williams JA, Ring BJ, Cantrell VE et al (2002) Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 30:883–891

    Article  CAS  PubMed  Google Scholar 

  15. Jover R, Bort R, Gomez-Lechon MJ, Castell JV (2001) Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: a study using adenovirus- mediated antisense targeting. Hepatology 33:668–675

    Article  CAS  PubMed  Google Scholar 

  16. Bort R, Gomez-Lechon MJ, Castell JV, Jover R (2004) Role of hepatocyte nuclear factor 3 g in the expression of human CYP2C genes. Arch Biochem Biophys 426:63–72

    Article  CAS  PubMed  Google Scholar 

  17. Engels FK, Ten Tije AJ, Baker SD et al (2004) Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin Pharmacol Ther 75:448–454

    Article  CAS  PubMed  Google Scholar 

  18. Cresteil T, Monsarrat B, Dubois J, Sonnier M, Alvinerie P, Gueritte F (2002) Regioselective metabolism of taxoids by human CYP3A4 and 2C8: structure-activity relationship. Drug Metab Dispos 30:438–445

    Article  CAS  PubMed  Google Scholar 

  19. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A (2005) Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 4:815–818

    Article  CAS  PubMed  Google Scholar 

  20. Smith NF, Marsh S, Scott-Horton TJ et al (2007) Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 81:76–82

    Article  CAS  PubMed  Google Scholar 

  21. Lagas JS, Vlaming ML, van Tellingen O et al (2006) Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics. Clin Cancer Res 12:6125–6132

    Article  CAS  PubMed  Google Scholar 

  22. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116:824–829

    Article  CAS  PubMed  Google Scholar 

  23. Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human ABCB1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33

    Article  CAS  PubMed  Google Scholar 

  24. Masuyama H, Suwaki N, Tateishi Y, Nakatsukasa H, Segawa T, Hiramatsu Y (2005) The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion. Mol Endocrinol 19:1170–1180

    Article  CAS  PubMed  Google Scholar 

  25. Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA (2005) Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol 68:747–757

    CAS  PubMed  Google Scholar 

  26. Harmsen S, Meijerman I, Beijnen JH, Schellens JH (2009) Nuclear receptor mediated induction of cytochrome P450 3A4 by anticancer drugs: a key role for the pregnane X receptor. Cancer Chemother Pharmacol 64:35–43

    Article  CAS  PubMed  Google Scholar 

  27. Baker SD, Verweij J, Cusatis GA et al (2009) Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 85:155–163

    Article  CAS  PubMed  Google Scholar 

  28. Henningsson A, Marsh S, Loos WJ et al (2005) Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 11:8097–8104

    Article  CAS  PubMed  Google Scholar 

  29. Marsh S, Somlo G, Li X et al (2007) Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 7:362–365

    Article  CAS  PubMed  Google Scholar 

  30. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W (2005) Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 15:693–704

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmeyer S, Burk O, von Richter O et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97:3473–3478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bosch TM, Huitema AD, Doodeman VD et al (2006) Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 12:5786–5793

    Article  CAS  PubMed  Google Scholar 

  33. Tran A, Jullien V, Alexandre J et al (2006) Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 79:570–580

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi H, Hishinuma T, Endo N et al (2006) Genetic variation in ABCB1 influences paclitaxel pharmacokinetics in Japanese patients with ovarian cancer. Int J Gynecol Cancer 16:979–985

    Article  CAS  PubMed  Google Scholar 

  35. Sissung TM, Mross K, Steinberg SM et al (2006) Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer 42:2893–2896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kim HS, Kim MK, Chung HH et al (2009) Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol Oncol 113:264–269

    Article  CAS  PubMed  Google Scholar 

  37. Gianni L, Kearns CM, Giani A et al (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    CAS  PubMed  Google Scholar 

  38. Yamamoto N, TamuraT Murakami H et al (2005) Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J Clin Oncol 23:1061–1069

    Article  CAS  PubMed  Google Scholar 

  39. Quattrochi LC, Guzelian PS (2001) Cyp3A regulation: from pharmacology to nuclear receptors. Drug Metab Dispos 29:615–622

    CAS  PubMed  Google Scholar 

  40. Tham LS, Holford NH, Hor SY et al (2007) Lack of association of single-nucleotide polymorphisms in pregnane X receptor, hepatic nuclear factor 4alpha, and constitutive androstane receptor with docetaxel pharmacokinetics. Clin Cancer Res 13:7126–7132

    Article  CAS  PubMed  Google Scholar 

  41. Tsai SM, Lin CY, Wu SH et al (2009) Side effects after docetaxel treatment in Taiwanese breast cancer patients with CYP3A4, CYP3A5, and ABCB1 gene polymorphisms. Clin Chim Acta 404:160–165

    Article  CAS  PubMed  Google Scholar 

  42. Leskelä S, Jara C, Leandro-García LJ et al (2011) Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 11:121–129

    Article  PubMed  Google Scholar 

  43. Kim KP, Ahn JH, Kim SB et al (2012) Prospective evaluation of the drug-metabolizing enzyme polymorphisms and toxicity profile of docetaxel in Korean patients with operable lymph node-positive breast cancer receiving adjuvant chemotherapy. Cancer Chemother Pharmacol 69:1221–1227

    Article  CAS  PubMed  Google Scholar 

  44. Bosó V, Herrero MJ, Santaballa A et al (2014) SNPs and taxane toxicity in breast cancer patients. Pharmacogenomics 15:1845–1858

    Article  PubMed  Google Scholar 

  45. Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y (2008) Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leucopenia. Cancer Sci 99:967–972

    Article  CAS  PubMed  Google Scholar 

  46. Uchiyama T, Kanno H, Ishitani K et al (2012) An SNP in CYP39A1 is associated with severe neutropenia induced by docetaxel. Cancer Chemother Pharmacol 69:1617–1624

    Article  CAS  PubMed  Google Scholar 

  47. Awada Z, Haider S, Tfayli A et al (2013) Pharmacogenomics variation in drug metabolizing enzymes and transporters in relation to docetaxel toxicity in Lebanese breast cancer patients: paving the way for OMICs in low and middle income countries. OMICS 17:353–367

    Article  CAS  PubMed  Google Scholar 

  48. Leandro-García LJ, Inglada-Pérez L, Pita G et al (2013) Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J Med Genet 50:599–605

    Article  PubMed  Google Scholar 

  49. Abraham JE, Guo Q, Dorling L et al (2014) Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res 20:2466–2475

    Article  CAS  PubMed  Google Scholar 

  50. Gréen H, Khan MS, Jakobsen-Falk I, Åvall-Lundqvist E, Peterson C (2011) Impact of CYP3A5*3 and CYP2C8-HapC on paclitaxel/carboplatin-induced myelosuppression in patients with ovarian cancer. J Pharm Sci 100:4205–4209

    Article  PubMed  Google Scholar 

  51. Puisset F, Chatelut E, Dalenc F et al (2004) Dexamethasone as a probe for docetaxel clearance. Cancer Chemother Pharmacol 54:265–272

    CAS  PubMed  Google Scholar 

  52. O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6:365–384

    Article  PubMed  Google Scholar 

  53. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824

    Article  CAS  PubMed  Google Scholar 

  54. Rudek MA, Sparreboom A, Garrett-Mayer ES et al (2004) Factors affecting pharmacokinetic variability following doxorubicin and docetaxel-based therapy. Eur J Cancer 40:1170–1178

    Article  CAS  PubMed  Google Scholar 

  55. Baker SD, Li J, Ten Tije AJ et al (2005) Relationship of systemic exposure to unbound docetaxel and neutropenia. Clin Pharmacol Ther 77:43–53

    Article  CAS  PubMed  Google Scholar 

  56. Chang H, Rha SY, Jeung H et al (2009) Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol 20:272–277

    Article  CAS  PubMed  Google Scholar 

  57. Petros WP, Hopkins PJ, Spruill S et al (2005) Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol 23:6117–6125

    Article  CAS  PubMed  Google Scholar 

  58. Rizzo R, Spaggiari F, Indelli M et al (2010) Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat 124:593–598

    Article  CAS  PubMed  Google Scholar 

  59. Krens SD, McLeod HL, Hertz DL (2013) Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 14:555–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Baldwin RM, Owzar K, Zembutsu H et al (2012) A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 18:5099–5109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:459–469

    Article  CAS  PubMed  Google Scholar 

  62. Baker SD, Verweij J, Cusatis GA et al (2008) Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 85:155–163

    Article  PubMed  Google Scholar 

  63. Watson RG, McLeod HL (2011) Pharmacogenomic contribution to drug response. Cancer J 17:80–88

    Article  CAS  PubMed  Google Scholar 

  64. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    Article  CAS  PubMed  Google Scholar 

  65. Gandara DR, Kawaguchi T, Crowley J et al (2009) Japanese–US common-arm analysis of paclitaxel plus carboplatin in advanced non-small-cell lung cancer: a model for assessing population-related pharmacogenomics. J Clin Oncol 27:3540–3546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish randomised trial in ovarian cancer. J Clin Oncol 25:4528–4535

    Article  CAS  PubMed  Google Scholar 

  67. Tulsyan S, Chaturvedi P, Singh AK et al (2014) Assessment of clinical outcomes in breast cancer patients treated with taxanes: multi-analytical approach. Gene 543:69–75

    Article  CAS  PubMed  Google Scholar 

  68. Gor PP, Su HI, Gray RJ et al (2010) Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res 12:R26

    Article  PubMed Central  PubMed  Google Scholar 

  69. McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785:96–132

    CAS  PubMed  Google Scholar 

  70. Huzil JT, Chen K, Kurgan L, Tuszynski JA (2007) The roles of beta-tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform 3:159–181

    PubMed Central  PubMed  Google Scholar 

  71. Monzo M, Rosell R, Sanchez JJ et al (1999) Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. J Clin Oncol 17:1786–1793

    CAS  PubMed  Google Scholar 

  72. Kelley MJ, Li S, Harpole DH (2001) Genetic analysis of the beta-tubulin gene, TUBB, in non-small-cell lung cancer. J Natl Cancer Inst 93:1886–1888

    Article  CAS  PubMed  Google Scholar 

  73. Seve P, Dumontet C (2008) Is class III b-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 9:168–175

    Article  CAS  PubMed  Google Scholar 

  74. Berrieman HK, Lind MJ, Cawkwell L (2004) Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol 5:158–164

    Article  CAS  PubMed  Google Scholar 

  75. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124

    Article  CAS  PubMed  Google Scholar 

  76. Spink DC, Spink BC, Cao JQ et al (1998) Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis 19:291–298

    Article  CAS  PubMed  Google Scholar 

  77. Sissung TM, Danesi R, Price DK et al (2008) Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther 7:19–26

    Article  CAS  PubMed  Google Scholar 

  78. McFadyen MC, Cruickshank ME, Miller ID et al (2001) Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br J Cancer 85:242–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Martinez VG, O’Connor R, Liang Y, Clynes M (2008) CYP1B1 expression is induced by docetaxel: effect on cell viability and drug resistance. Br J Cancer 98:564–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Gehrmann M, Schmidt M, Brase JC, Roos P, Hengstler JG (2008) Prediction of paclitaxel resistance in breast cancer: is CYP1B1*3 a new factor of influence? Pharmacogenomics 9:969–974

    Article  PubMed  Google Scholar 

  81. Pusztai L (2007) Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann Oncol 18:5–20

    Article  Google Scholar 

  82. Kroetz DL, Pauli-Magnus C, Hodges LM et al (2003) Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 13:481–494

    Article  CAS  PubMed  Google Scholar 

  83. Sissung TM, Baum CE, Deeken J et al (2008) ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 14:4543–4549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Green H, Soderkvist P, Rosenberg P, Horvath G, Peterson C (2006) Mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin Cancer Res 12:854–859

    Article  CAS  PubMed  Google Scholar 

  85. Lanni JS, Lowe SW, Licitra EJ, Liu JO, Jacks T (1997) P53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc Natl Acad Sci USA 94:9679–9683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Wahl AF, Donaldson KL, Fairchild C et al (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2:72–79

    Article  CAS  PubMed  Google Scholar 

  87. Kandioler-Eckersberger D, Ludwig C, Rudas M et al (2000) P53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 6:50–56

    CAS  PubMed  Google Scholar 

  88. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  PubMed  Google Scholar 

  89. Bartel F, Meye A, Wurl P et al (2001) Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int J Cancer 95:168–175

    Article  CAS  PubMed  Google Scholar 

  90. Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  CAS  PubMed  Google Scholar 

  91. Chrisanthar R, Knappskog S, Løkkevik E et al (2011) Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel. PLoS One 6:e19249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Dong N, Yu J, Wang C et al (2012) Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J Cancer Res Clin Oncol 138:1197–1203

    Article  CAS  PubMed  Google Scholar 

  93. Hertz DL, Motsinger-Reif AA, Drobish A et al (2012) CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 134:401–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Marmé F, Werft W, Walter A et al (2012) CD24 Ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane- based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res Treat 132:819–831

    Article  PubMed  Google Scholar 

  95. Lee SY, Im SA, Park YH et al (2014) Genetic polymorphisms of SLC28A3, SLC29A1 and RRM1 predict clinical outcome in patients with metastatic breast cancer receiving gemcitabine plus paclitaxel chemotherapy. Eur J Cancer 50:698–705

    Article  CAS  PubMed  Google Scholar 

  96. Rodriguez-Antona C (2010) Pharmacogenomics of paclitaxel. Pharmacogenomics 11:621–623

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Scarpa.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Iuliis, F., Salerno, G., Taglieri, L. et al. Are pharmacogenomic biomarkers an effective tool to predict taxane toxicity and outcome in breast cancer patients? Literature review. Cancer Chemother Pharmacol 76, 679–690 (2015). https://doi.org/10.1007/s00280-015-2818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2818-4

Keywords

Navigation