Skip to main content

Advertisement

Log in

UGT1A1*6 polymorphisms are correlated with irinotecan-induced toxicity: a system review and meta-analysis in Asians

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies confirmed that genotyping uridine diphosphate glucuronosyltransferase (UGT) 1A1*28 polymorphisms could predict the side effects in cancer patients using irinotecan (IRI) and then reduce IRI-induced toxicity by preventative treatment or decrease in dose. However, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in Asian patients is still unclear. The aim of this study was to evaluate the association between UGT1A1*6 polymorphisms and IRI-induced severe neutropenia as well as diarrhea in Asian patients.

Methods

We searched all papers on PubMed and Embase from February 1998 to August 2013. Then we assessed the methodologies quality, extracted data and made statistics analysis using STATA software. To uncover the sources of heterogeneity, subgroup meta-analysis was conducted according to the dosage of IRI.

Results

Eleven papers were included according to the inclusion and exclusion criteria after searching Pubmed and Embase. Overall, an increased risk of severe toxicity in Asian patients with UGT1A1*6 polymorphisms was found. Patients with heterozygous variant of UGT1A1*6 showed an increased risk [odds ratio (OR) = 1.98, 95 % confidence intervals (CI) 1.45–2.71, P < 0.001], and homozygous mutation showed an even higher risk (OR = 4.44, 95 % CI 2.42–8.14, P < 0.001) for severe neutropenia. For severe diarrhea, heterozygous variant of UGT1A1*6 showed no significant risk, while the homozygous variant performed a notable risk (OR = 3.51, 95 % CI 1.41–8.73, P = 0.007). Subgroup meta-analysis indicated that for patients harboring either heterozygous or homozygous variant, low dose of IRI also presented comparably increased risk in suffering severe neutropenia.

Conclusion

In this meta-analysis, UGT1A1*6 polymorphisms were revealed as potential biomarkers, predicting IRI-induced severe toxicity in patients from Asia, and increased incidences of severe neutropenia could occur in both high/medium and low doses of IRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rothenberg ML, Eckardt JR, Kuhn JG, Burris HA 3rd, Nelson J, Hilsenbeck SG, Rodriguez GI, Thurman AM, Smith LS, Eckhardt SG, Weiss GR, Elfring GL, Rinaldi DA, Schaaf LJ, Von Hoff DD (1996) Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol 14(4):1128–1135

    CAS  PubMed  Google Scholar 

  2. Lara PN Jr, Natale R, Crowley J, Lenz HJ, Redman MW, Carleton JE, Jett J, Langer CJ, Kuebler JP, Dakhil SR, Chansky K, Gandara DR (2009) Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol 27(15):2530–2535. doi:10.1200/jco.2008.20.1061

    Article  CAS  PubMed  Google Scholar 

  3. Lim WT, Lim ST, Wong NS, Koo WH (2003) CPT-11 and cisplatin in the treatment of advanced gastric cancer in Asians. J Chemother 15(4):400–405

    CAS  PubMed  Google Scholar 

  4. Yamamoto K, Kokawa K, Umesaki N, Nishimura R, Hasegawa K, Konishi I, Saji F, Nishida M, Noguchi H, Takizawa K (2009) Phase I study of combination chemotherapy with irinotecan hydrochloride and nedaplatin for cervical squamous cell carcinoma: Japanese gynecologic oncology group study. Oncol Rep 21(4):1005–1009

    Article  CAS  PubMed  Google Scholar 

  5. de Forni M, Bugat R, Chabot GG, Culine S, Extra JM, Gouyette A, Madelaine I, Marty ME, Mathieu-Boue A (1994) Phase I and pharmacokinetic study of the camptothecin derivative irinotecan, administered on a weekly schedule in cancer patients. Cancer Res 54(16):4347–4354

    PubMed  Google Scholar 

  6. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Investig 101(4):847–854. doi:10.1172/jci915

    Article  CAS  PubMed  Google Scholar 

  7. Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, Pasetto LM, Pessa S, Errante D, De Pangher V, Giusto M, Medici M, Gaion F, Sandri P, Galligioni E, Bonura S, Boccalon M, Biason P, Frustaci S (2006) The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 24(19):3061–3068. doi:10.1200/jco.2005.05.5400

    Article  CAS  PubMed  Google Scholar 

  8. Cote JF, Kirzin S, Kramar A, Mosnier JF, Diebold MD, Soubeyran I, Thirouard AS, Selves J, Laurent-Puig P, Ychou M (2007) UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clin Cancer Res 13(11):3269–3275. doi:10.1158/1078-0432.ccr-06-2290

    Article  CAS  PubMed  Google Scholar 

  9. Rouits E, Charasson V, Petain A, Boisdron-Celle M, Delord JP, Fonck M, Laurand A, Poirier AL, Morel A, Chatelut E, Robert J, Gamelin E (2008) Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer 99(8):1239–1245. doi:10.1038/sj.bjc.6604673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Marcuello E, Altes A, Menoyo A, Del Rio E, Gomez-Pardo M, Baiget M (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91(4):678–682. doi:10.1038/sj.bjc.6602042

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ando Y, Chida M, Nakayama K, Saka H, Kamataki T (1998) The UGT1A1*28 allele is relatively rare in a Japanese population. Pharmacogenetics 8(4):357–360

    Article  CAS  PubMed  Google Scholar 

  12. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677–685

    Article  CAS  PubMed  Google Scholar 

  13. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24(15):2237–2244. doi:10.1200/jco.2005.03.0239

    Article  CAS  PubMed  Google Scholar 

  14. Gao J, Zhou J, Li Y, Lu M, Jia R, Shen L (2013) UGT1A1 6/28 polymorphisms could predict irinotecan-induced severe neutropenia not diarrhea in Chinese colorectal cancer patients. Med Oncol 30(3):604. doi:10.1007/s12032-013-0604-x

    Google Scholar 

  15. Inoue K, Sonobe M, Kawamura Y, Etoh T, Takagi M, Matsumura T, Kikuyama M, Kimura M, Minami S, Utsuki H, Yamazaki T, Suzuki T, Tsuji D, Hayashi H, Itoh K (2013) Polymorphisms of the UDP-glucuronosyl transferase 1A genes are associated with adverse events in cancer patients receiving irinotecan-based chemotherapy. Tohoku J Exp Med 229(2):107–114

    Article  CAS  PubMed  Google Scholar 

  16. Choi YH, Kim TW, Kim KP, Lee SS, Hong YS, Ryu MH, Lee JL, Chang HM, Ryoo BY, Kim HS, Shin JG, Kang YK (2012) A phase II study of clinical outcomes of 3-week cycles of irinotecan and S-1 in patients with previously untreated metastatic colorectal cancer: influence of the UGT1A1 and CYP2A6 polymorphisms on clinical activity. Oncology 82(5):290–297. doi:10.1159/000337989

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura Y, Soda H, Oka M, Kinoshita A, Fukuda M, Fukuda M, Takatani H, Nagashima S, Soejima Y, Kasai T, Nakatomi K, Masuda N, Tsukamoto K, Kohno S (2011) Randomized phase II trial of irinotecan with paclitaxel or gemcitabine for non-small cell lung cancer: association of UGT1A1*6 and UGT1A1*27 with severe neutropenia. J Thorac Oncol 6(1):121–127. doi:10.1097/JTO.0b013e318200e4e8

    Article  PubMed  Google Scholar 

  18. Okuyama Y, Hazama S, Nozawa H, Kobayashi M, Takahashi K, Fujikawa K, Kato T, Nagata N, Kimura H, Oba K, Sakamoto J, Mishima H (2011) Prospective phase II study of FOLFIRI for mCRC in Japan, including the analysis of UGT1A1 28/6 polymorphisms. Jpn J Clin Oncol 41(4):477–482. doi:10.1093/jjco/hyr001

    Article  PubMed  Google Scholar 

  19. Seo BG, Kwon HC, Oh SY, Lee S, Kim SG, Kim SH, Han H, Kim HJ (2009) Comprehensive analysis of excision repair complementation group 1, glutathione S-transferase, thymidylate synthase and uridine diphosphate glucuronosyl transferase 1A1 polymorphisms predictive for treatment outcome in patients with advanced gastric cancer treated with FOLFOX or FOLFIRI. Oncol Rep 22(1):127–136

    CAS  PubMed  Google Scholar 

  20. Takano M, Kato M, Yoshikawa T, Sasaki N, Hirata J, Furuya K, Takahashi M, Yokota H, Kino N, Horie K, Goto T, Fujiwara K, Ishii K, Kikuchi Y, Kita T (2009) Clinical significance of UDP-glucuronosyltransferase 1A1*6 for toxicities of combination chemotherapy with irinotecan and cisplatin in gynecologic cancers: a prospective multi-institutional study. Oncology 76(5):315–321. doi:10.1159/000209335

    Article  CAS  PubMed  Google Scholar 

  21. Jada SR, Lim R, Wong CI, Shu X, Lee SC, Zhou Q, Goh BC, Chowbay B (2007) Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C> A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci 98(9):1461–1467. doi:10.1111/j.1349-7006.2007.00541.x

    Article  CAS  PubMed  Google Scholar 

  22. Onoue M, Terada T, Kobayashi M, Katsura T, Matsumoto S, Yanagihara K, Nishimura T, Kanai M, Teramukai S, Shimizu A, Fukushima M, Inui K (2009) UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. Int J Clin Oncol 14(2):136–142. doi:10.1007/s10147-008-0821-z

    Article  CAS  PubMed  Google Scholar 

  23. Satoh T, Ura T, Yamada Y, Yamazaki K, Tsujinaka T, Munakata M, Nishina T, Okamura S, Esaki T, Sasaki Y, Koizumi W, Kakeji Y, Ishizuka N, Hyodo I, Sakata Y (2011) Genotype-directed, dose-finding study of irinotecan in cancer patients with UGT1A1*28 and/or UGT1A1*6 polymorphisms. Cancer Sci 102(10):1868–1873. doi:10.1111/j.1349-7006.2011.02030.x

    Article  CAS  PubMed  Google Scholar 

  24. Takahara N, Nakai Y, Isayama H, Sasaki T, Satoh Y, Takai D, Hamada T, Uchino R, Mizuno S, Miyabayashi K, Mohri D, Kawakubo K, Kogure H, Yamamoto N, Sasahira N, Hirano K, Ijichi H, Tada M, Yatomi Y, Koike K (2013) Uridine diphosphate glucuronosyl transferase 1 family polypeptide A1 gene (UGT1A1) polymorphisms are associated with toxicity and efficacy in irinotecan monotherapy for refractory pancreatic cancer. Cancer Chemother Pharmacol 71(1):85–92. doi:10.1007/s00280-012-1981-0

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Shen L, Xu N, Wang JW, Jiao SC, Liu ZY, Xu JM (2012) UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World J Gastroenterol (WJG) 18(45):6635–6644. doi:10.3748/wjg.v18.i45.6635

    Article  CAS  Google Scholar 

  26. Sunakawa Y, Ichikawa W, Fujita K, Nagashima F, Ishida H, Yamashita K, Mizuno K, Miwa K, Kawara K, Akiyama Y, Araki K, Yamamoto W, Miya T, Narabayashi M, Ando Y, Hirose T, Saji S, Sasaki Y (2011) UGT1A1*1/*28 and *1/*6 genotypes have no effects on the efficacy and toxicity of FOLFIRI in Japanese patients with advanced colorectal cancer. Cancer Chemother Pharmacol 68(2):279–284. doi:10.1007/s00280-010-1485-8

    Article  CAS  PubMed  Google Scholar 

  27. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokoyama A, Saitoh S, Shimokata K, Hasegawa Y (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60(24):6921–6926

    CAS  PubMed  Google Scholar 

  28. Sai K, Saito Y, Sakamoto H, Shirao K, Kurose K, Saeki M, Ozawa S, Kaniwa N, Hirohashi S, Saijo N, Sawada J, Yoshida T (2008) Importance of UDP-glucuronosyltransferase 1A1*6 for irinotecan toxicities in Japanese cancer patients. Cancer Lett 261(2):165–171. doi:10.1016/j.canlet.2007.11.009

    Article  CAS  PubMed  Google Scholar 

  29. Akie K, Oizumi S, Ogura S, Shinagawa N, Kikuchi E, Fukumoto S, Harada M, Kinoshita I, Kojima T, Harada T, Fujita Y, Ohsaki Y, Dosaka-Akita H, Isobe H, Nishimura M (2011) Phase II study of irinotecan plus S-1 combination for previously untreated advanced non-small cell lung cancer: Hokkaido Lung Cancer Clinical Study Group Trial (HOT) 0601. Oncology 81(2):84–90. doi:10.1159/000331681

    Article  CAS  PubMed  Google Scholar 

  30. Gao J, Zhou J, Li Y, Peng Z, Li Y, Wang X, Shen L (2013) Associations between UGT1A1*6/*28 polymorphisms and irinotecan-induced severe toxicity in Chinese gastric or esophageal cancer patients. Med Oncol 30(3):630. doi:10.1007/s12032-013-0630-8

    Google Scholar 

  31. Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y (2002) Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit 24(1):111–116

    Article  CAS  PubMed  Google Scholar 

  32. Moher D (2010) Corrigendum to: preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement International Journal of Surgery 8:336–341. Int J Surg. doi:10.1016/j.ijsu.2010.07.299

    Google Scholar 

  33. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  34. Zintzaras E, Ioannidis JP (2005) Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol 28(2):123–137. doi:10.1002/gepi.20048

    Article  PubMed  Google Scholar 

  35. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  Google Scholar 

  36. Duval S, Tweedie R (2000) A nonparametric “Trim and Fill” method of accounting for publication bias in meta-analysis. Biometrics 56(2):455–463

    Google Scholar 

  37. Jorgensen AL, Williamson PR (2008) Methodological quality of pharmacogenetic studies: issues of concern. Stat Med 27(30):6547–6569. doi:10.1002/sim.3420

    Article  PubMed  Google Scholar 

  38. Liu X, Cheng D, Kuang Q, Liu G, Xu W (2013) Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. doi:10.1038/tpj.2013.10

    Google Scholar 

  39. Balram C, Sabapathy K, Fei G, Khoo KS, Lee EJ (2002) Genetic polymorphisms of UDP-glucuronosyltransferase in Asians: UGT1A1*28 is a common allele in Indians. Pharmacogenetics 12(1):81–83

    Article  CAS  PubMed  Google Scholar 

  40. Gagne JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62(3):608–617

    Article  CAS  PubMed  Google Scholar 

  41. Jinno H, Tanaka-Kagawa T, Hanioka N, Saeki M, Ishida S, Nishimura T, Ando M, Saito Y, Ozawa S, Sawada J (2003) Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants, G71R, P229Q, and Y486D. Drug Metab Dispos 31(1):108–113

    Article  CAS  PubMed  Google Scholar 

  42. Hu ZY, Yu Q, Pei Q, Guo C (2010) Dose-dependent association between UGT1A1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res 16(15):3832–3842. doi:10.1158/1078-0432.ccr-10-1122

    Article  CAS  PubMed  Google Scholar 

  43. Cortejoso L, Garcia MI, Garcia-Alfonso P, Gonzalez-Haba E, Escolar F, Sanjurjo M, Lopez-Fernandez LA (2013) Differential toxicity biomarkers for irinotecan- and oxaliplatin-containing chemotherapy in colorectal cancer. Cancer Chemother Pharmacol 71(6):1463–1472. doi:10.1007/s00280-013-2145-6

    Article  CAS  PubMed  Google Scholar 

  44. Fukushima M, Sakamoto K, Ohshimo H, Nakagawa F, Taguchi T (2010) Irinotecan overcomes the resistance to 5-fluorouracil in human colon cancer xenografts by down-regulation of intratumoral thymidylate synthase. Oncol Rep 24(4):835–842

    Article  CAS  PubMed  Google Scholar 

  45. Ide H, Kikuchi E, Hasegawa M, Hattori S, Yasumizu Y, Miyajima A, Oya M (2013) Therapeutic enhancement of S-1 with CPT-11 through down-regulation of thymidylate synthase in bladder cancer. Cancer medicine 2(4):488–495. doi:10.1002/cam4.95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Raida M, Schwabe W, Hausler P, Van Kuilenburg AB, Van Gennip AH, Behnke D, Hoffken K (2001) Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res 7(9):2832–2839

    CAS  PubMed  Google Scholar 

  47. Hu ZY, Yu Q, Zhao YS (2010) Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. Eur J Cancer 46(10):1856–1865. doi:10.1016/j.ejca.2010.02.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant 81172094 and 81101816 from the National Science Foundation of China, Grant 2011-WS-005 from the Six Talents Peak Foundation of Jiangsu Province, Grants BK2011095, BY2012185, BK2011271 and BK2011044 from the Natural Science Foundation of Jiangsu Province, China, Grant 2014CB744501 of the National Basic Research Program of China (973 Program) and the Grant KF-GN-201204 from State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University to GXX. Thanks very much to Tian-Tian Wang for her help of revise.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Qian.

Additional information

Lei Cheng and Ming Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Li, M., Hu, J. et al. UGT1A1*6 polymorphisms are correlated with irinotecan-induced toxicity: a system review and meta-analysis in Asians. Cancer Chemother Pharmacol 73, 551–560 (2014). https://doi.org/10.1007/s00280-014-2382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2382-3

Keywords

Navigation