Skip to main content

Advertisement

Log in

The VEGF pathway in lung cancer

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Lung cancer is a disease whose prognosis has remained poor in the last decades. Recent advances in the understanding of the molecular pathways behind this disease have revealed several mediators of important tumor functions. One of these functions is angiogenesis, which is considered essential for tumor growth and propagation, and a key mediator promoting this process is the vascular endothelial growth factor (VEGF). In lung cancer, VEGF plays a significant role in establishing a vascular supply within the tumor. Thus, a new class of drugs has emerged, targeting its pathway, which has offered substantial, albeit small, improvements in patient prognosis.

Areas covered

The VEGF pathway and its role in a multitude of different human cancers are presented at first. We then proceed by analyzing its importance in lung cancer and exploring the therapeutic benefits achieved by its targeting, which set new goals for the future.

Expert opinion

Today, the VEGF pathway remains an attractive target for anticancer treatment, and the way forward requires detection of predictive markers and efforts for a more complete angiogenic blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

VEGF:

Vascular and endothelial growth factor

VEGFR:

Vascular and endothelial growth factor receptor

MVD:

Mean vascular density

NSCLC:

Non-small-cell lung carcinoma

SCLC:

Small cell lung carcinoma

ECM:

Extracellular matrix

MMP:

Matrix metalloproteinase

NP1:

Neuropilin-1

HSPG:

Heparin sulfate proteoglycan

FGF:

Fibroblast growth factor

PDGF:

Platelet-derived growth factor

HIF-1:

Hypoxia-induced factor 1

pVHL:

Von Hippel–Lindau protein

EGF:

Epidermal growth factor

IGF-1:

Insulin-like growth factor 1

TGF-a:

Transforming growth factor a

TGF-b:

Transforming growth factor b

IL-1:

Interleukin-1

Il-6:

Interleukin-6

PFS:

Progression-free survival

RR:

Response rate

OS:

Overall survival

MT-TKI:

Multitarget tyrosine kinase inhibitor

miRNA:

microRNA

COX-2:

Cyclooxygenase 2

PGE2 :

Prostaglandin E2

mAb:

Monoclonal antibody

EGFR:

Epidermal growth factor receptor

PGF:

Placental growth factor

PDGFR:

Platelet-derived growth factor receptor

ICAM-1:

Intracellular adhesion molecule 1

IC50 :

Half maximal inhibitory concentration

SNPs:

Single-nucleotide polymorphisms

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Google Scholar 

  2. Kajdaniuk D, Marek B, Foltyn W, Kos-Kudła B (2011) Vascular endothelial growth factor (VEGF)—part 1: in physiology and pathophysiology. Endokrynol Pol 62(5):444–455

    PubMed  CAS  Google Scholar 

  3. Kajdaniuk D, Marek B, Foltyn W, Kos-Kudła B (2011) Vascular endothelial growth factor (VEGF)—part 2: in endocrinology and oncology. Endokrynol Pol 62(5):456–464

    Google Scholar 

  4. Larsen JE, Cascone T, Gerber DE et al (2011) Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 17(6):512–527

    Google Scholar 

  5. Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985

    Article  PubMed  CAS  Google Scholar 

  6. Vempati P, Mac Gabhann F, Popel AS (2010) Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS One 5(7):e11860

    Article  PubMed  Google Scholar 

  7. Ho QT, Kuo CJ (2007) Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 39(7–8):1349–1357

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  PubMed  CAS  Google Scholar 

  9. Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH (2012) Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 31(1–2):143–162

    Google Scholar 

  10. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108(3):349–355

    PubMed  CAS  Google Scholar 

  11. Dong F, Ha XQ (2010) Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy. Chin Med J (Engl) 123(17):2454–2460

    CAS  Google Scholar 

  12. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  PubMed  CAS  Google Scholar 

  13. Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    Article  PubMed  CAS  Google Scholar 

  14. Melero-Martin JM, Dudley AC (2011) Concise review: vascular stem cells and tumor angiogenesis. Stem Cells 29(2):163–168

    Article  PubMed  CAS  Google Scholar 

  15. Gadgeel SM (2012) Safety profile and tolerability of antiangiogenic agents in non-small-cell lung cancer. Clin Lung Cancer 13(2):96–106

    Article  PubMed  CAS  Google Scholar 

  16. Goel S, Duda DG, Xu L et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  PubMed  CAS  Google Scholar 

  17. Korpanty G, Smyth E, Sullivan LA et al (2010) Antiangiogenic therapy in lung cancer: focus on vascular endothelial growth factor pathway. Exp Biol Med (Maywood) 235(1):3–9

    Article  CAS  Google Scholar 

  18. de Mello RA, Costa BM, Reis RM, Hespanhol V (2012) Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent Pat Anticancer Drug Discov 7(1):118–131

    Article  PubMed  Google Scholar 

  19. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514

    Article  PubMed  CAS  Google Scholar 

  20. Lichtenberger BM, Tan PK, Niederleithner H et al (2010) Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140(2):268–279

    Article  PubMed  CAS  Google Scholar 

  21. Raica M, Cimpean AM, Ribatti D (2009) Angiogenesis in pre-malignant conditions. Eur J Cancer 45(11):1924–1934

    Article  PubMed  CAS  Google Scholar 

  22. Des Guetz G, Uzzan B, Nicolas P et al (2006) Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 94(12):1823–1832

    Google Scholar 

  23. Kut C, Mac Gabhann F, Popel AS (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer 97(7):978–985

    Article  PubMed  CAS  Google Scholar 

  24. Kaio E, Tanaka S, Kitadai Y et al (2003) Clinical significance of angiogenic factor expression at the deepest invasive site of advanced colorectal carcinoma. Oncology 64(1):61–73

    Article  PubMed  CAS  Google Scholar 

  25. Galfrascoli E, Piva S, Cinquini M et al (2011) Risk/benefit profile of bevacizumab in metastatic colon cancer: a systematic review and meta-analysis. Dig Liver Dis 43(4):286–294

    Article  PubMed  CAS  Google Scholar 

  26. Gaya A, Tse V (2012) A preclinical and clinical review of aflibercept for the management of cancer. Cancer Treat Rev 38(5):484–493

    Article  PubMed  CAS  Google Scholar 

  27. Vermeulen PB, van Golen KL, Dirix LY (2010) Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 116(11 Suppl):2748–2754

    Article  PubMed  CAS  Google Scholar 

  28. Fox SB, Generali DG, Harris AL (2007) Breast tumour angiogenesis. Breast Cancer Res 9(6):216

    Article  PubMed  Google Scholar 

  29. Wicki A, Rochlitz C (2012) Targeted therapies in breast cancer. Swiss Med Wkly 142:w13550

    PubMed  Google Scholar 

  30. Sakamoto S, Ryan AJ, Kyprianou N (2008) Targeting vasculature in urologic tumors: mechanistic and therapeutic significance. J Cell Biochem 103(3):691–708

    Article  PubMed  CAS  Google Scholar 

  31. Vermeulen PB, van Golen KL, Dirix LY (2010) Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 116(11 Suppl):2748–2754

    Article  PubMed  CAS  Google Scholar 

  32. Niu YN, Xia SJ (2009) Stroma-epithelium crosstalk in prostate cancer. Asian J Androl 11(1):28–35

    Article  PubMed  CAS  Google Scholar 

  33. Smith RA, Tang J, Tudur-Smith C, Neoptolemos JP, Ghaneh P (2011) Meta-analysis of immunohistochemical prognostic markers in resected pancreatic cancer. Br J Cancer 104(9):1440–1451

    Article  PubMed  CAS  Google Scholar 

  34. Li L, Kaelin WG Jr (2011) New insights into the biology of renal cell carcinoma. Hematol Oncol Clin North Am 25(4):667–686

    Article  PubMed  Google Scholar 

  35. Singer EA, Gupta GN, Srinivasan R (2012) Targeted therapeutic strategies for the management of renal cell carcinoma. Curr Opin Oncol 24(3):284–290

    Article  PubMed  Google Scholar 

  36. Kim WY, Lee HY (2009) Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors. FEBS J 276(17):4653–4664

    Article  PubMed  CAS  Google Scholar 

  37. Gerstner ER, Batchelor TT (2012) Antiangiogenic therapy for glioblastoma. Cancer J 18(1):45–50

    Article  PubMed  CAS  Google Scholar 

  38. Cappetta A, Lonardi S, Pastorelli D et al (2012) Advanced gastric cancer (GC) and cancer of the gastro-oesophageal junction (GEJ): focus on targeted therapies. Crit Rev Oncol Hematol 81(1):38–48

    PubMed  Google Scholar 

  39. De Vita F, Giuliani F, Silvestris N et al (2012) Current status of targeted therapies in advanced gastric cancer. Expert Opin Ther Targets 16(Suppl 2):S29–S34

    Article  PubMed  Google Scholar 

  40. Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH (2012) Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 31(1–2):143–162

    Google Scholar 

  41. Kim A, Ueda Y, Naka T, Enomoto T (2012) Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 31:14

    Article  PubMed  CAS  Google Scholar 

  42. Schoenleber SJ, Kurtz DM, Talwalkar JA et al (2009) Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. Br J Cancer 100(9):1385–1392

    Article  PubMed  CAS  Google Scholar 

  43. Cervello M, McCubrey JA, Cusimano A et al (2012) Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 3(3):236–260

    PubMed  Google Scholar 

  44. Yang X, Flaig TW (2010) Novel targeted agents for the treatment of bladder cancer: translating laboratory advances into clinical application. Int Braz J Urol 36(3):273–282

    Article  PubMed  Google Scholar 

  45. Black PC (2012) Molecular signaling and the role of targeted therapies in bladder cancer. Minerva Urol Nefrol 64(1):7–17

    PubMed  CAS  Google Scholar 

  46. Medinger M, Fischer N, Tzankov A (2010) Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol 2010:729725

    Article  PubMed  Google Scholar 

  47. Schmidt T, Carmeliet P (2011) Angiogenesis: a target in solid tumors, also in leukemia? Hematol Am Soc Hematol Educ Program 2011:1–8

    Article  Google Scholar 

  48. Keefe SM, Cohen MA, Brose MS (2010) Targeting vascular endothelial growth factor receptor in thyroid cancer: the intracellular and extracellular implications. Clin Cancer Res 16(3):778–783

    Article  PubMed  CAS  Google Scholar 

  49. Schlumberger M, Sherman SI (2012) Approach to the patient with advanced differentiated thyroid cancer. Eur J Endocrinol 166(1):5–11

    Article  PubMed  CAS  Google Scholar 

  50. Marneros AG (2009) Tumor angiogenesis in melanoma. Hematol Oncol Clin North Am 23(3):431–446, vii–viii

    Google Scholar 

  51. Mangana J, Levesque MP, Karpova MB, Dummer R (2012) Sorafenib in melanoma. Expert Opin Investig Drugs 21(4):557–568

    Article  PubMed  CAS  Google Scholar 

  52. Aldoss IT, Ganti AK (2009) Targeted therapy for squamous cell carcinoma of the head and neck. J Egypt Natl Canc Inst 21(2):157–166

    PubMed  Google Scholar 

  53. Karatzanis AD, Koudounarakis E, Papadakis I, Velegrakis G (2012) Molecular pathways of lymphangiogenesis and lymph node metastasis in head and neck cancer. Eur Arch Otorhinolaryngol 269(3):731–737

    Article  PubMed  CAS  Google Scholar 

  54. Raza S, Kornblum N, Kancharla VP et al (2011) Emerging therapies in the treatment of locally advanced squamous cell cancers of head and neck. Recent Pat Anticancer Drug Discov 6(2):246–257

    Article  PubMed  CAS  Google Scholar 

  55. Voelkel NF, Vandivier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290:L209–L221

    Article  PubMed  CAS  Google Scholar 

  56. Bonnesen B, Pappot H, Holmstav J, Skov BG (2009) Vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: relation to prognosis. Lung Cancer 66(3):314–318

    Article  PubMed  Google Scholar 

  57. Du L, Pertsemlidis A (2010) microRNAs and lung cancer: tumors and 22-mers. Cancer Metastasis Rev 29(1):109–122

    Article  PubMed  CAS  Google Scholar 

  58. Liu B, Peng XC, Zheng XL et al (2009) MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66(2):169–175

    Article  PubMed  Google Scholar 

  59. Lee JM, Yanagawa J, Peebles KA et al (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66(3):208–217

    Article  PubMed  Google Scholar 

  60. Belani CP, Goss G, Blumenschein G Jr (2012) Recent clinical developments and rationale for combining targeted agents in non-small cell lung cancer (NSCLC). Cancer Treat Rev 38(3):173–184

    Google Scholar 

  61. Pennell NA, Lynch TJ Jr (2009) Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist 14(4):399–411

    Article  PubMed  CAS  Google Scholar 

  62. Zhan P, Wang J, Lv XJ et al (2009) Prognostic value of vascular endothelial growth factor expression in patients with lung cancer: a systematic review with meta-analysis. J Thorac Oncol 4(9):1094–1103

    Article  PubMed  Google Scholar 

  63. Herbst RS, Onn A, Sandler A (2005) Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 23(14):3243–3256

    Article  PubMed  CAS  Google Scholar 

  64. Bremnes RM, Camps C, Sirera R (2006) Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer 51(2):143–158

    Article  PubMed  Google Scholar 

  65. Yuan A, Yu CJ, Chen WJ et al (2000) Correlation of total VEGF mRNA and protein expression with histologic type, tumor angiogenesis, patient survival and timing of relapse in non-small-cell lung cancer. Int J Cancer 89(6):475–483

    Article  PubMed  CAS  Google Scholar 

  66. Salgia R (2011) Prognostic significance of angiogenesis and angiogenic growth factors in nonsmall cell lung cancer. Cancer 117(17):3889–3899

    Article  PubMed  CAS  Google Scholar 

  67. Jain L, Vargo CA, Danesi R et al (2009) The role of vascular endothelial growth factor SNPs as predictive and prognostic markers for major solid tumors. Mol Cancer Ther 8(9):2496–2508

    Article  PubMed  CAS  Google Scholar 

  68. Shang B, Cao Z, Zhou Q (2012) Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med 6(1):67–78

    Article  PubMed  Google Scholar 

  69. Kubota Y (2012) Tumor angiogenesis and anti-angiogenic therapy. Keio J Med 61(2):47–56

    Google Scholar 

  70. Blumenschein GR Jr (2012) Developmental antiangiogenic agents for the treatment of non-small cell lung cancer (NSCLC). Invest New Drugs 30(4):1802–1811

    Google Scholar 

  71. Gaya A, Tse V (2012) A preclinical and clinical review of aflibercept for the management of cancer. Cancer Treat Rev 38(5):484–493

    Article  PubMed  CAS  Google Scholar 

  72. Sitohy B, Nagy JA, Dvorak HF (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72(8):1909–1914

    Article  PubMed  CAS  Google Scholar 

  73. Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41(4):278–286

    Article  PubMed  CAS  Google Scholar 

  74. Hsu JY, Wakelee HA (2009) Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs 23(5):289–304

    Article  PubMed  CAS  Google Scholar 

  75. Bar J, Goss GD (2012) Tumor vasculature as a therapeutic target in non-small cell lung cancer. J Thorac Oncol 7(3):609–620

    Article  PubMed  CAS  Google Scholar 

  76. Jain RK, Duda DG, Willett CG et al (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338

    Article  PubMed  CAS  Google Scholar 

  77. Reinmuth N, Thomas M, Meister M, Schnabel PA, Kreuter M (2010) Current data on predictive markers for anti-angiogenic therapy in thoracic tumours. Eur Respir J 36(4):915–924

    Article  PubMed  CAS  Google Scholar 

  78. Yu L, Deng L, Li J et al (2013) The prognostic value of vascular endothelial growth factor in ovarian cancer: a systematic review and meta-analysis. Gynecol Oncol 128(2):391–396

    Article  PubMed  CAS  Google Scholar 

  79. Kampen KR (2012) The mechanisms that regulate the localization and overexpression of VEGF receptor-2 are promising therapeutic targets in cancer biology. Anticancer Drugs 23(4):347–354

    Article  PubMed  CAS  Google Scholar 

  80. Bando H, Weich HA, Brokelmann M et al (2005) Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer 92(3):553–561

    PubMed  CAS  Google Scholar 

  81. Liu L, Ma XL, Xiao ZL et al (2012) Prognostic value of vascular endothelial growth factor expression in resected gastric cancer. Asian Pac J Cancer Prev 13(7):3089–3097

    Article  PubMed  Google Scholar 

  82. Mineta H, Miura K, Ogino T et al (2000) Prognostic value of vascular endothelial growth factor (VEGF) in head and neck squamous cell carcinomas. Br J Cancer 83(6):775–781

    Article  PubMed  CAS  Google Scholar 

  83. Sun L, Yu D, Sun S-Y et al (2013) Expressions of ER, PR, HER-2, COX-2, and VEGF in primary and relapsed/metastatic breast cancers. Cell Biochem Biophys. doi:10.1007/s12013-013-9729-y

  84. Łuczyńska E, Gasińska A, Wilk W (2013) Microvessel density and expression of vascular endothelial growth factor in clinically localized prostate cancer. Pol J Pathol 64(1):33–38

    PubMed  Google Scholar 

  85. Hu-Lowe DD, Zou HY, Grazzini ML et al (2008) Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 14(22):7272–7283

    Article  PubMed  CAS  Google Scholar 

  86. Wedge SR, Kendrew J, Hennequin LF et al (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65(10):4389–4400

    Article  PubMed  CAS  Google Scholar 

  87. Polverino A, Coxon A, Starnes C et al (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 66(17):8715–8721

    Article  PubMed  CAS  Google Scholar 

  88. Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  PubMed  CAS  Google Scholar 

  89. Sun L, Liang C, Shirazian S et al (2003) Discovery of 5-[5-fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46(7):1116–1119

    Article  PubMed  CAS  Google Scholar 

  90. Wedge SR, Ogilvie DJ, Dukes M et al (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62(16):4645–4655

    PubMed  CAS  Google Scholar 

  91. Lambrechts D, Lenz HJ, de Haas S et al (2013) Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 31(9):1219–1230. doi:10.1200/JCO.2012.46.2762 (Epub 2013 Feb 11)

    Google Scholar 

  92. Vaziri SA, Kim J, Ganapathi MK, Ganapathi R (2010) Vascular endothelial growth factor polymorphisms: role in response and toxicity of tyrosine kinase inhibitors. Curr Oncol Rep. 12(2):102–108

    Article  PubMed  CAS  Google Scholar 

  93. Lambrechts D, Claes B, Delmar P et al (2012) VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials. Lancet Oncol 13(7):724–733

    Article  PubMed  CAS  Google Scholar 

  94. Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26(28):4672–4678

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos N. Syrigos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alevizakos, M., Kaltsas, S. & Syrigos, K.N. The VEGF pathway in lung cancer. Cancer Chemother Pharmacol 72, 1169–1181 (2013). https://doi.org/10.1007/s00280-013-2298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2298-3

Keywords

Navigation