Skip to main content

Tumor-Vascular Interactions in Non-Small Cell Lung Cancer

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment
  • 1420 Accesses

Abstract

Despite improved diagnostics leading to early discovery and potentially curable disease, and with new promising treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide.

As will be shown in this chapter, tumor cell interaction with lung vasculature in NSCLC is complicated. Angiogenesis, defined as the sprouting of new capillaries from pre-existing vessels, has been found as an important prognostic factor in lung cancer. There are several new potential treatments aiming to inhibit angiogenesis, either alone or in combination with other chemotherapeutic substances or lately also with immunotherapy. The major problem seems to be the increased risk of adverse events, and possibly not a long-lasting effect on survival. Also, there is a constant and yet unmet need for reliable biomarkers for selecting patients who will benefit from such advanced treatment.

Meanwhile, as researchers try to find new treatments with increasingly complicated methods, vascular invasion represents a tumor feature that is currently included in pathology reports in our environment, and that in numerous publications is reported to have a clear impact on survival. We believe that this important and easily accessible prognostic factor should be taken more into consideration, not only concerning primary staging, but also to select a group of patients that need close follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Stewart BW, Wild C. International Agency for Research on Cancer, World Health Organization, World cancer report 2014. Lyon, France, Geneva, Switzerland: International Agency for Research on Cancer,WHO Press; 2014. xiv, 630 pages p.

    Google Scholar 

  3. Lu T, Yang X, Huang Y, Zhao M, Li M, Ma K, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res. 2019;11:943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC, editors. World health organization classification of tumours. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004.

    Google Scholar 

  5. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, et al. The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.

    Article  PubMed  Google Scholar 

  6. Travis WD, Brambilla E, Burke AP, Marx A, Niholson AG, editors. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: IARC; 2015.

    Google Scholar 

  7. Quint LE, Tummala S, Brisson LJ, Francis IR, Krupnick AS, Kazerooni EA, et al. Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg. 1996;62(1):246–50.

    Article  CAS  PubMed  Google Scholar 

  8. Stenbygaard LE, Sorensen JB, Larsen H, Dombernowsky P. Metastatic pattern in non-resectable non-small cell lung cancer. Acta Oncol. 1999;38(8):993–8.

    Article  CAS  PubMed  Google Scholar 

  9. Brierley J, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. Chichester, West Sussex: Wiley; 2017.

    Google Scholar 

  10. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv1–iv21.

    Article  CAS  PubMed  Google Scholar 

  11. Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hamaji M. Surgery and stereotactic body radiotherapy for early-stage non-small cell lung cancer: prospective clinical trials of the past, the present, and the future. Gen Thorac Cardiovasc Surg. 2020;68(7):692–6.

    Article  PubMed  Google Scholar 

  13. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361(10):958–67.

    Article  CAS  PubMed  Google Scholar 

  14. Helsedirektoratet. Nasjonalt handlingsprogram med retningslinjer for diagnostikk, behandling og oppfølging av lungekreft. 01/2014 ed2014.

    Google Scholar 

  15. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Cancer Netw. 2021;19(3):254–66.

    Article  CAS  Google Scholar 

  16. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30(17):2046–54.

    Article  CAS  PubMed  Google Scholar 

  18. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  22. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morgensztern D, Herbst RS. Nivolumab and pembrolizumab for non-small cell lung cancer. Clin Cancer Res. 2016;22(15):3713–7.

    Article  CAS  PubMed  Google Scholar 

  24. Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH. The microenvironment of lung cancer and therapeutic implications. Adv Exp Med Biol. 2016;890:75–110.

    Article  PubMed  Google Scholar 

  25. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells – what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19(1):9–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Young RP, Hopkins RJ, Gamble GD, Etzel C, El-Zein R, Crapo JD. Genetic evidence linking lung cancer and COPD: a new perspective. Appl Clin Genet. 2011;4:99–111.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhai R, Yu X, Shafer A, Wain JC, Christiani DC. The impact of coexisting COPD on survival of patients with early-stage non-small cell lung cancer undergoing surgical resection. Chest. 2014;145(2):346–53.

    Article  PubMed  Google Scholar 

  29. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    Article  CAS  PubMed  Google Scholar 

  30. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.

    Article  CAS  PubMed  Google Scholar 

  31. Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 2014;40(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  32. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  CAS  PubMed  Google Scholar 

  34. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  35. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  36. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.

    CAS  PubMed  Google Scholar 

  37. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science. 1977;197(4306):893–5.

    Article  CAS  PubMed  Google Scholar 

  38. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  41. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  42. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82(1):4–6.

    Article  CAS  PubMed  Google Scholar 

  43. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    Article  CAS  PubMed  Google Scholar 

  44. Demidova-Rice TN, Durham JT, Herman IM. Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing. Adv Wound Care (New Rochelle). 2012;1(1):17–22.

    Article  Google Scholar 

  45. Eming SA, Brachvogel B, Odorisio T, Koch M. Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem. 2007;42(3):115–70.

    Article  CAS  PubMed  Google Scholar 

  46. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  47. Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF. Heterogeneity of the tumor vasculature. Semin Thromb Hemost. 2010;36(3):321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hong S, Tan M, Wang S, Luo S, Chen Y, Zhang L. Efficacy and safety of angiogenesis inhibitors in advanced non-small cell lung cancer: a systematic review and meta-analysis. J Cancer Res Clin Oncol. 2015;141(5):909–21.

    Article  CAS  PubMed  Google Scholar 

  49. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26(5):605–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  CAS  PubMed  Google Scholar 

  51. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ballas MS, Chachoua A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. Onco Targets Ther. 2011;4:43–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferrara N. Vascular endothelial growth factor. Trends Cardiovasc Med. 1993;3(6):244–50.

    Article  CAS  PubMed  Google Scholar 

  54. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  55. Donnem T, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann Oncol. 2010;21(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  56. Donnem T, Al-Saad S, Al-Shibli K, Delghandi MP, Persson M, Nilsen MN, et al. Inverse prognostic impact of angiogenic marker expression in tumor cells versus stromal cells in non small cell lung cancer. Clin Cancer Res. 2007;13(22 Pt 1):6649–57.

    Article  CAS  PubMed  Google Scholar 

  57. Donnem T, Al-Shibli K, Al-Saad S, Busund LT, Bremnes RM. Prognostic impact of fibroblast growth factor 2 in non-small cell lung cancer: coexpression with VEGFR-3 and PDGF-B predicts poor survival. J Thorac Oncol. 2009;4(5):578–85.

    Article  PubMed  Google Scholar 

  58. Donnem T, Al-Shibli K, Al-Saad S, Delghandi MP, Busund LT, Bremnes RM. VEGF-A and VEGFR-3 correlate with nodal status in operable non-small cell lung cancer: inverse correlation between expression in tumor and stromal cells. Lung Cancer. 2009;63(2):277–83.

    Article  PubMed  Google Scholar 

  59. Rusnati M, Presta M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des. 2007;13(20):2025–44.

    Article  CAS  PubMed  Google Scholar 

  60. Wu E, Palmer N, Tian Z, Moseman AP, Galdzicki M, Wang X, et al. Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells. PLoS One. 2008;3(11):e3794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol. 2001;2(11):667–73.

    Article  CAS  PubMed  Google Scholar 

  63. Boone B, Brochez L. Clinical markers and driving mechanisms in melanoma progression: VEGF-C, RhoC, c-Ski/SnoN and EGFR. Verh K Acad Geneeskd Belg. 2009;71(5):251–94.

    CAS  PubMed  Google Scholar 

  64. Feng Q, Guo P, Wang J, Zhang X, Yang HC, Feng JG. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas. Exp Ther Med. 2018;15(3):2597–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gasparini G. Clinical significance of determination of surrogate markers of angiogenesis in breast cancer. Crit Rev Oncol Hematol. 2001;37(2):97–114.

    Article  CAS  PubMed  Google Scholar 

  66. Ozdemir F, Akdogan R, Aydin F, Reis A, Kavgaci H, Gul S, et al. The effects of VEGF and VEGFR-2 on survival in patients with gastric cancer. J Exp Clin Cancer Res. 2006;25(1):83–8.

    CAS  PubMed  Google Scholar 

  67. Fontanini G, Vignati S, Boldrini L, Chine S, Silvestri V, Lucchi M, et al. Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma. Clin Cancer Res. 1997;3(6):861–5.

    CAS  PubMed  Google Scholar 

  68. Mattern J, Koomagi R, Volm M. Vascular endothelial growth-factor expression and angiogenesis in nonsmall cell lung carcinomas. Int J Oncol. 1995;6(5):1059–62.

    CAS  PubMed  Google Scholar 

  69. O’Byrne KJ, Koukourakis MI, Giatromanolaki A, Cox G, Turley H, Steward WP, et al. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br J Cancer. 2000;82(8):1427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Donnem T, Al-Shibli K, Andersen S, Al-Saad S, Busund LT, Bremnes RM. Combination of low vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 expression and high lymphocyte infiltration is a strong and independent favorable prognostic factor in patients with nonsmall cell lung cancer. Cancer. 2010;116(18):4318–25.

    Article  CAS  PubMed  Google Scholar 

  71. Jain RK, Carmeliet P. SnapShot: tumor angiogenesis. Cell. 2012;149(6):1408-e1.

    Article  CAS  Google Scholar 

  72. Kuczynski EA, Reynolds AR. Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis. 2020;23(1):55–74.

    Article  CAS  PubMed  Google Scholar 

  73. Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2013;2(4):427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241(3):362–74.

    Article  CAS  PubMed  Google Scholar 

  75. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  76. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer. 2002;38(12):1564–79.

    Article  CAS  PubMed  Google Scholar 

  77. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, et al. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer. 1996;32A(14):2474–84.

    Article  CAS  PubMed  Google Scholar 

  78. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res. 2009;69(11):4708–15.

    Article  CAS  PubMed  Google Scholar 

  79. Stefansson IM, Salvesen HB, Akslen LA. Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res. 2006;66(6):3303–9.

    Article  CAS  PubMed  Google Scholar 

  80. Straume O, Chappuis PO, Salvesen HB, Halvorsen OJ, Haukaas SA, Goffin JR, et al. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res. 2002;62(23):6808–11.

    CAS  PubMed  Google Scholar 

  81. Meert AP, Paesmans M, Martin B, Delmotte P, Berghmans T, Verdebout JM, et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2002;87(7):694–701.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Macchiarini P, Fontanini G, Hardin MJ, Squartini F, Angeletti CA. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet. 1992;340(8812):145–6.

    Article  CAS  PubMed  Google Scholar 

  83. Medetoglu B, Gunluoglu MZ, Demir A, Melek H, Buyukpinarbasili N, Fener N, et al. Tumor angiogenesis in predicting the survival of patients with stage I lung cancer. J Thorac Cardiovasc Surg. 2010;140(5):996–1000.

    Article  PubMed  Google Scholar 

  84. Pomme G, Augustin F, Fiegl M, Droeser RA, Sterlacci W, Tzankov A. Detailed assessment of microvasculature markers in non-small cell lung cancer reveals potentially clinically relevant characteristics. Virchows Arch. 2015;467(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  85. Mlika M, Makhlouf C, Boudaya MS, Haddouchi C, Tritar F, Mezni F. Evaluation of the microvessel density and the expression of metalloproteases 2 and 9 and ttf1 in the different subtypes of lung adenocarcinoma in Tunisia: a retrospective study of 46 cases. J Immunoassay Immunochem. 2015;36(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  86. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60(5):1388–93.

    CAS  PubMed  Google Scholar 

  87. Yazdani S, Miki Y, Tamaki K, Ono K, Iwabuchi E, Abe K, et al. Proliferation and maturation of intratumoral blood vessels in non-small cell lung cancer. Hum Pathol. 2013;44(8):1586–96.

    Article  PubMed  Google Scholar 

  88. Ramnefjell M, Aamelfot C, Aziz S, Helgeland L, Akslen LA. Microvascular proliferation is associated with aggressive tumour features and reduced survival in lung adenocarcinoma. J Pathol Clin Res. 2017;3(4):249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arnes JB, Stefansson IM, Straume O, Baak JP, Lonning PE, Foulkes WD, et al. Vascular proliferation is a prognostic factor in breast cancer. Breast Cancer Res Treat. 2012;133(2):501–10.

    Article  CAS  PubMed  Google Scholar 

  90. Nalwoga H, Arnes JB, Stefansson IM, Wabinga H, Foulkes WD, Akslen LA. Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat. 2011;130(3):1063–71.

    Article  PubMed  Google Scholar 

  91. Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA. Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast. 2013;22(3):282–8.

    Article  CAS  PubMed  Google Scholar 

  92. Hoem D, Straume O, Immervoll H, Akslen LA, Molven A. Vascular proliferation is associated with survival in pancreatic ductal adenocarcinoma. APMIS. 2013;121(11):1037–46.

    Article  CAS  PubMed  Google Scholar 

  93. Hugdahl E, Bachmann IM, Schuster C, Ladstein RG, Akslen LA. Prognostic value of uPAR expression and angiogenesis in primary and metastatic melanoma. PLoS One. 2019;14(1):e0210399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tanaka F, Oyanagi H, Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, et al. Glomeruloid microvascular proliferation is superior to intratumoral microvessel density as a prognostic marker in non-small cell lung cancer. Cancer Res. 2003;63(20):6791–4.

    CAS  PubMed  Google Scholar 

  95. Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 1992;52(19):5334–41.

    CAS  PubMed  Google Scholar 

  96. Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci. 1992;103(Pt 2):589–97.

    Article  CAS  PubMed  Google Scholar 

  97. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60(4):585–95.

    Article  CAS  PubMed  Google Scholar 

  98. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, et al. Nestin expression – a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61(19–20):2510–22.

    Article  CAS  PubMed  Google Scholar 

  99. Krupkova O Jr, Loja T, Zambo I, Veselska R. Nestin expression in human tumors and tumor cell lines. Neoplasma. 2010;57(4):291–8.

    Article  PubMed  Google Scholar 

  100. Bae HS, Chung YW, Lee JK, Lee NW, Yeom BW, Lee KW, et al. Nestin expression as an indicator of cervical cancer initiation. Eur J Gynaecol Oncol. 2013;34(3):238–42.

    CAS  PubMed  Google Scholar 

  101. He QZ, Luo XZ, Zhou Q, Wang K, Li SX, Li Y, et al. Expression of nestin in ovarian serous cancer and its clinicopathologic significance. Eur Rev Med Pharmacol Sci. 2013;17(21):2896–901.

    PubMed  Google Scholar 

  102. Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI, et al. Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res. 2007;67(19):9199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu C, Chen B, Zhu J, Zhang R, Yao F, Jin F, et al. Clinical implications for nestin protein expression in breast cancer. Cancer Sci. 2010;101(3):815–9.

    Article  CAS  PubMed  Google Scholar 

  104. Qin Q, Sun Y, Fei M, Zhang J, Jia Y, Gu M, et al. Expression of putative stem marker nestin and CD133 in advanced serous ovarian cancer. Neoplasma. 2012;59(3):310–5.

    Article  CAS  PubMed  Google Scholar 

  105. Zhong B, Wang T, Lun X, Zhang J, Zheng S, Yang W, et al. Contribution of nestin positive esophageal squamous cancer cells on malignant proliferation, apoptosis, and poor prognosis. Cancer Cell Int. 2014;14:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Janikova M, Skarda J, Dziechciarkova M, Radova L, Chmelova J, Krejci V, et al. Identification of CD133+/nestin+ putative cancer stem cells in non-small cell lung cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(4):321–6.

    Article  PubMed  Google Scholar 

  107. Chen Z, Wang J, Cai L, Zhong B, Luo H, Hao Y, et al. Role of the stem cell-associated intermediate filament nestin in malignant proliferation of non-small cell lung cancer. PLoS One. 2014;9(2):e85584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Chen Z, Wang T, Luo H, Lai Y, Yang X, Li F, et al. Expression of nestin in lymph node metastasis and lymphangiogenesis in non-small cell lung cancer patients. Hum Pathol. 2010;41(5):737–44.

    Article  CAS  PubMed  Google Scholar 

  109. Narita K, Matsuda Y, Seike M, Naito Z, Gemma A, Ishiwata T. Nestin regulates proliferation, migration, invasion and stemness of lung adenocarcinoma. Int J Oncol. 2014;44(4):1118–30.

    Article  CAS  PubMed  Google Scholar 

  110. Ryuge S, Sato Y, Jiang SX, Wang G, Matsumoto T, Katono K, et al. Prognostic impact of nestin expression in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer. 2012;77(2):415–20.

    Article  PubMed  Google Scholar 

  111. Ryuge S, Sato Y, Wang GQ, Matsumoto T, Jiang SX, Katono K, et al. Prognostic significance of nestin expression in resected non-small cell lung cancer. Chest. 2011;139(4):862–9.

    Article  PubMed  Google Scholar 

  112. Skarda J, Kolar Z, Janikova M, Radova L, Kolek V, Fridman E, et al. Analysis of the prognostic impact of nestin expression in non-small cell lung cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  113. Mokry J, Cizkova D, Filip S, Ehrmann J, Osterreicher J, Kolar Z, et al. Nestin expression by newly formed human blood vessels. Stem Cells Dev. 2004;13(6):658–64.

    Article  CAS  PubMed  Google Scholar 

  114. Kraby MR, Kruger K, Opdahl S, Vatten LJ, Akslen LA, Bofin AM. Microvascular proliferation in luminal A and basal-like breast cancer subtypes. J Clin Pathol. 2015;68(11):891–7.

    Article  CAS  PubMed  Google Scholar 

  115. Onisim A, Achimas-Cadariu A, Vlad C, Kubelac P, Achimas-Cadariu P. Current insights into the association of Nestin with tumor angiogenesis. J BUON. 2015;20(3):699–706.

    PubMed  Google Scholar 

  116. Mosely JM, Dickson DR. Vascular invasion in lung cancer. Clinical-pathologic significance. Am Rev Respir Dis. 1960;82:807–9.

    CAS  PubMed  Google Scholar 

  117. Harada M, Hato T, Horio H. Intratumoral lymphatic vessel involvement is an invasive indicator of completely resected pathologic stage I non-small cell lung cancer. J Thorac Oncol. 2011;6(1):48–54.

    Article  PubMed  Google Scholar 

  118. Matsuura N, Go T, Fujiwara A, Nakano T, Nakashima N, Tarumi S, et al. Lymphatic invasion is a cause of local recurrence after wedge resection of primary lung cancer. Gen Thorac Cardiovasc Surg. 2019;67(10):861–6.

    Article  PubMed  Google Scholar 

  119. Neri S, Yoshida J, Ishii G, Matsumura Y, Aokage K, Hishida T, et al. Prognostic impact of microscopic vessel invasion and visceral pleural invasion in non-small cell lung cancer: a retrospective analysis of 2657 patients. Ann Surg. 2014;260(2):383–8.

    Article  PubMed  Google Scholar 

  120. Ramnefjell M, Aamelfot C, Helgeland L, Akslen LA. Vascular invasion is an adverse prognostic factor in resected non-small-cell lung cancer. APMIS. 2017;125(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  121. Hamanaka R, Yokose T, Sakuma Y, Tsuboi M, Ito H, Nakayama H, et al. Prognostic impact of vascular invasion and standardization of its evaluation in stage I non-small cell lung cancer. Diagn Pathol. 2015;10:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kudo Y, Saji H, Shimada Y, Matsubayashi J, Nagao T, Kakihana M, et al. Proposal on incorporating blood vessel invasion into the T classification parts as a practical staging system for stage I non-small cell lung cancer. Lung Cancer. 2013;81(2):187–93.

    Article  PubMed  Google Scholar 

  123. Aylwin JA. Avoidable vascular spread in resection for bronchial carcinoma. Thorax. 1951;6(3):250–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Collier FC, Blakemore WS, Kyle RH, Enterline HT, Kirby CK, Johnson J. Carcinoma of the lung: factors which influence five year survival with special reference to blood vessel invasion. Ann Surg. 1957;146(3):417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Collier FC, Enterline HT, Kyle RH, Tristan TT, Greening R. The prognostic implications of vascular invasion in primary carcinomas of the lung; a clinicopathologic correlation of two hundred twenty-five cases with one hundred per cent follow-up. AMA Arch Pathol. 1958;66(4):594–603.

    CAS  PubMed  Google Scholar 

  126. Elson CE, Roggli VL, Vollmer RT, Greenberg SD, Fraire AE, Spjut HJ, et al. Prognostic indicators for survival in stage I carcinoma of the lung: a histologic study of 47 surgically resected cases. Mod Pathol. 1988;1(4):288–91.

    CAS  PubMed  Google Scholar 

  127. Macchiarini P, Dulmet E, De Montpreville V, Chapelier A, Cerrina J, Le Roy LF, et al. Prognostic significance of peritumoural blood and lymphatic vessel invasion by tumour cells in T4 non-small cell lung cancer following induction therapy. Surg Oncol. 1995;4(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  128. Rigau V, Molina TJ, Chaffaud C, Huchon G, Audouin J, Chevret S, et al. Blood vessel invasion in resected non small cell lung carcinomas is predictive of metastatic occurrence. Lung Cancer. 2002;38(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  129. Sung SY, Kwak YK, Lee SW, Jo IY, Park JK, Kim KS, et al. Lymphovascular invasion increases the risk of nodal and distant recurrence in node-negative stage I-IIA non-small-cell lung cancer. Oncology. 2018;95(3):156–62.

    Article  PubMed  Google Scholar 

  130. Shimizu R, Kinoshita T, Sasaki N, Uematsu M, Sugita Y, Shima T, et al. Clinicopathological factors related to recurrence patterns of resected non-small cell lung cancer. J Clin Med. 2020;9(8)

    Google Scholar 

  131. Al-Alao BS, Gately K, Nicholson S, McGovern E, Young VK, O'Byrne KJ. Prognostic impact of vascular and lymphovascular invasion in early lung cancer. Asian Cardiovasc Thorac Ann. 2014;22(1):55–64.

    Article  PubMed  Google Scholar 

  132. Higgins KA, Chino JP, Ready N, D'Amico TA, Berry MF, Sporn T, et al. Lymphovascular invasion in non-small-cell lung cancer: implications for staging and adjuvant therapy. J Thorac Oncol. 2012;7(7):1141–7.

    Article  PubMed  Google Scholar 

  133. Hishida T, Yoshida J, Maeda R, Ishii G, Aokage K, Nishimura M, et al. Prognostic impact of intratumoural microvascular invasion and microlymphatic permeation on node-negative non-small-cell lung cancer: which indicator is the stronger prognostic factor? Eur J Cardiothorac Surg. 2013;43(4):772–7.

    Article  PubMed  Google Scholar 

  134. Kato T, Ishikawa K, Aragaki M, Sato M, Okamoto K, Ishibashi T, et al. Angiolymphatic invasion exerts a strong impact on surgical outcomes for stage I lung adenocarcinoma, but not non-adenocarcinoma. Lung Cancer. 2012;77(2):394–400.

    Article  PubMed  Google Scholar 

  135. Kessler R, Gasser B, Massard G, Roeslin N, Meyer P, Wihlm JM, et al. Blood vessel invasion is a major prognostic factor in resected non-small cell lung cancer. Ann Thorac Surg. 1996;62(5):1489–93.

    Article  CAS  PubMed  Google Scholar 

  136. Ma KF, Chu XY, Liu Y. Clinical significance of lymphatic vessel invasion in stage I non-small cell lung cancer patients. Genet Mol Res. 2015;14(1):1819–27.

    Article  CAS  PubMed  Google Scholar 

  137. Usui S, Minami Y, Shiozawa T, Iyama S, Satomi K, Sakashita S, et al. Differences in the prognostic implications of vascular invasion between lung adenocarcinoma and squamous cell carcinoma. Lung Cancer. 2013;82(3):407–12.

    Article  PubMed  Google Scholar 

  138. Wang J, Chen J, Chen X, Wang B, Li K, Bi J. Blood vessel invasion as a strong independent prognostic indicator in non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2011;6(12):e28844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang J, Wang B, Zhao W, Guo Y, Chen H, Chu H, et al. Clinical significance and role of lymphatic vessel invasion as a major prognostic implication in non-small cell lung cancer: a meta-analysis. PLoS One. 2012;7(12):e52704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed.

    Google Scholar 

  141. Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc. 2006;81(9):1241–57.

    Article  CAS  PubMed  Google Scholar 

  142. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001;280(6):C1358–66.

    Article  CAS  PubMed  Google Scholar 

  143. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–78.

    Article  CAS  PubMed  Google Scholar 

  144. Andersen S, Donnem T, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Angiogenic markers show high prognostic impact on survival in marginally operable non-small cell lung cancer patients treated with adjuvant radiotherapy. J Thorac Oncol. 2009;4(4):463–71.

    Article  PubMed  Google Scholar 

  145. Donnem T, Andersen S, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Prognostic impact of angiogenic markers in non-small-cell lung cancer is related to tumor size. Clin Lung Cancer. 2011;12(2):106–15.

    Article  PubMed  Google Scholar 

  146. Li BT, Barnes TA, Chan DL, Naidoo J, Lee A, Khasraw M, et al. The addition of anti-angiogenic tyrosine kinase inhibitors to chemotherapy for patients with advanced non-small-cell lung cancers: A meta-analysis of randomized trials. Lung Cancer. 2016;102:21–7.

    Article  PubMed  Google Scholar 

  147. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12(6):713–8.

    Article  CAS  PubMed  Google Scholar 

  148. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27(8):1227–34.

    Article  CAS  PubMed  Google Scholar 

  149. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21(9):1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50.

    Article  CAS  PubMed  Google Scholar 

  151. Helsedirektoratet. Nasjonalt handlingsprogram med retningslinjer for diagnostikk, behandling og oppfølging av lungekreft, mesoteliom og thymom. 2021.

    Google Scholar 

  152. Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7(5):387–401.

    Article  CAS  PubMed  Google Scholar 

  153. Doebele RC, Spigel D, Tehfe M, Thomas S, Reck M, Verma S, et al. Phase 2, randomized, open-label study of ramucirumab in combination with first-line pemetrexed and platinum chemotherapy in patients with nonsquamous, advanced/metastatic non-small cell lung cancer. Cancer. 2015;121(6):883–92.

    Article  CAS  PubMed  Google Scholar 

  154. Ramlau R, Gorbunova V, Ciuleanu TE, Novello S, Ozguroglu M, Goksel T, et al. Aflibercept and Docetaxel versus Docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial. J Clin Oncol. 2012;30(29):3640–7.

    Article  CAS  PubMed  Google Scholar 

  155. Fala L. Cyramza (ramucirumab) approved for the treatment of advanced gastric cancer and metastatic non-small-cell lung cancer. Am Health Drug Benefits 2015;8(Spec Feature):49–53.

    Google Scholar 

  156. Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384(9944):665–73.

    Article  CAS  PubMed  Google Scholar 

  157. Hall CJ, Umeweni N, Knight H, Smith L. NICE guidance on ramucirumab for previously treated locally advanced or metastatic non-small-cell lung cancer. Lancet Oncol. 2016;17(10):1357–8.

    Article  PubMed  Google Scholar 

  158. Chu BF, Otterson GA. Incorporation of Antiangiogenic Therapy Into the Non-Small-Cell Lung Cancer Paradigm. Clin Lung Cancer. 2016;17(6):493–506.

    Article  CAS  PubMed  Google Scholar 

  159. Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15(2):143–55.

    Article  CAS  PubMed  Google Scholar 

  160. Hall CJ, Hay N, George E, Adler AI. NICE guidance on nintedanib for previously treated locally advanced, metastatic, or locally recurrent non-small-cell lung cancer. Lancet Oncol. 2015;16(9):1019–20.

    Article  PubMed  Google Scholar 

  161. Mok T, Gorbunova V, Juhasz E, Szima B, Burdaeva O, Orlov S, et al. A correlative biomarker analysis of the combination of bevacizumab and carboplatin-based chemotherapy for advanced nonsquamous non-small-cell lung cancer: results of the phase II randomized ABIGAIL study (BO21015). J Thorac Oncol. 2014;9(6):848–55.

    Article  CAS  PubMed  Google Scholar 

  162. Mok TS, Hsia TC, Tsai CM, Tsang K, Chang GC, Chang JW, et al. Efficacy of bevacizumab with cisplatin and gemcitabine in Asian patients with advanced or recurrent non-squamous non-small cell lung cancer who have not received prior chemotherapy: a substudy of the Avastin in Lung trial. Asia Pac J Clin Oncol. 2011;7(Suppl 2):4–12.

    Article  PubMed  Google Scholar 

  163. Zhao YY, Xue C, Jiang W, Zhao HY, Huang Y, Feenstra K, et al. Predictive value of intratumoral microvascular density in patients with advanced non-small cell lung cancer receiving chemotherapy plus bevacizumab. J Thorac Oncol. 2012;7(1):71–5.

    Article  PubMed  Google Scholar 

  164. Qiang H, Chang Q, Xu J, Qian J, Zhang Y, Lei Y, et al. New advances in antiangiogenic combination therapeutic strategies for advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2020;146(3):631–45.

    Article  PubMed  Google Scholar 

  165. De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D, et al. The role of the EGFR signaling in tumor microenvironment. J Cell Physiol. 2008;214(3):559–67.

    Article  PubMed  CAS  Google Scholar 

  166. Masuda C, Yanagisawa M, Yorozu K, Kurasawa M, Furugaki K, Ishikura N, et al. Bevacizumab counteracts VEGF-dependent resistance to erlotinib in an EGFR-mutated NSCLC xenograft model. Int J Oncol. 2017;51(2):425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Manegold C, Dingemans AC, Gray JE, Nakagawa K, Nicolson M, Peters S, et al. The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol. 2017;12(2):194–207.

    Article  PubMed  Google Scholar 

  168. Datta M, Coussens LM, Nishikawa H, Hodi FS, Jain RK. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am Soc Clin Oncol Educ Book. 2019;39:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ramnefjell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramnefjell, M., Akslen, L.A. (2022). Tumor-Vascular Interactions in Non-Small Cell Lung Cancer. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics