Skip to main content

Advertisement

Log in

The marine sponge toxin agelasine B increases the intracellular Ca2+ concentration and induces apoptosis in human breast cancer cells (MCF-7)

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

In search for new drugs derived from natural products for the possible treatment of cancer, we studied the action of agelasine B, a compound purified from a marine sponge Agelas clathrodes.

Methods

Agelasine B was purified from a marine sponge Agelas clathrodes and assayed for cytotoxicity by MTT on two human breast cancer cells (MCF-7 and SKBr3), on a prostate cancer cells (PC-3) and on human fibroblasts. Changes in the intracellular Ca2+ concentrations were assessed with FURA 2 and by confocal microscopy. Determination of Ca2+-ATPase activity was followed by Pi measurements. Changes in the mitochondria electrochemical potential was followed with Rhodamine 123. Apoptosis and DNA fragmentation were determined by TUNEL experiments.

Results

Upon agelasine B treatment, cell viability of both human breast cancer cell lines was one order of magnitude lower as compared with fibroblasts (IC50 for MCF-7 = 2.99 μM; SKBr3: IC50 = 3.22 μM vs. fibroblasts: IC50 = 32.91 μM), while the IC50 for PC-3 IC50 = 6.86 μM. Agelasine B induced a large increase in the intracellular Ca2+ concentration in MCF-7, SKBr3, and PC-3 cells. By the use of confocal microscopy coupled to a perfusion system, we could observe that this toxin releases Ca2+ from the endoplasmic reticulum (ER). We also demonstrated that agelasine B produces a potent inhibition of the ER Ca2+-ATPase (SERCA), and that this compound induced the fragmentation of DNA. Accordingly, agelasine B reduced the expression of the anti-apoptotic protein Bcl-2 and was able to activate caspase 8, without affecting the activity of caspase 7.

Conclusions

Agelasine B in MCF-7 cells induce the activation of apoptosis in response to a sustained increase in the [Ca2+] i after blocking the SERCA activity. The reproduction of the effects of agelasine B on cell viability and on the [Ca2+] I obtained on SKBr3 and PC-3 cancer cells strongly suggests the generality of the mechanism of action of this toxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gordaliza M (2009) Terpenyl-Purines from the sea. Mar Drugs 7:833–849

    Article  PubMed  CAS  Google Scholar 

  2. Vik A, Hedner E, Charnock C, Tangen LW, Samuelsen O, Larsson R, Bohlin L, Gundersen LL (2007) Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Bioorg Med Chem 15:4016–4037

    Article  PubMed  CAS  Google Scholar 

  3. Gademann K, Kobylinska J (2009) Antimalarial natural products of marine and freshwater origin. Chem Rec 9:187–198

    Article  PubMed  CAS  Google Scholar 

  4. Vik A, Proszenyak A, Vermeersch M, Cos P, Maes L, Gundersen LL (2009) Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa; identification of hits for visceral leishmaniasis and chagas disease. Molecules 14:279–288

    Article  PubMed  CAS  Google Scholar 

  5. Ishida K, Ishibashi M, Shigemori H, Sasaki T, Kobayashi J (1992) Agelasine G, a new antileukemic alkaloid from the Okinawan marine sponge Agelas sp. Chem Pharm Bull 40:766–767

    Article  PubMed  CAS  Google Scholar 

  6. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinalli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca+2: a control point of apoptosis. Science 300:135–139

    Article  PubMed  CAS  Google Scholar 

  7. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  8. Carafoli E (1987) Intracellular calcium homeostasis. Annun Rev Biochem 56:395–433

    Article  CAS  Google Scholar 

  9. Jackisch C, Hahm HA, Tombal B, McCloskey D, Butash K, Davidson NE, Denmeade SR (2000) Delayed micromolar elevation in intracellular calcium precedes induction of apoptosis in thapsigargin-treated breast cancer cells. Clin Can Res 6:2844–2850

    CAS  Google Scholar 

  10. Lei P, Abdelrahim M, Cho SD, Liu S, Chintharlapalli S, Safe S (2008) 1, 1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes colon cancer cell and tumor growth through activation of c-jun N-terminal kinase. Carcinogenesis 29:1139–1147

    Article  PubMed  CAS  Google Scholar 

  11. Chen LH, Jiang C, Watts R, Thorne RF, Kiejda KA, Zhang XD, Hersey P (2008) Inhibition of endoplasmic reticulum stress–induced apoptosis of melanoma cells by the ARC protein. Cancer Res 68:834–842

    Article  PubMed  CAS  Google Scholar 

  12. Denmeade SR, Jakobsen CM, Janssen S, Khan SR, Garrett E, Lilja H, Christensen SB, Isaacs JT (2003) Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Natl Cancer Inst 95:990–1000

    Article  PubMed  CAS  Google Scholar 

  13. Sun S, Han J, Ralph WM Jr, Chandrasekaran A, Liu K, Auborn KJ, Carter TH (2004) Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones 9:76–87

    PubMed  CAS  Google Scholar 

  14. Wu Y, Fabritius M, Ip C (2009) Chemotherapeutic sensitization by endoplasmic reticulum stress: increasing the efficacy of taxane against prostate cancer. Cancer Biol Ther 8:146–152

    Article  PubMed  CAS  Google Scholar 

  15. Wu H, Nakamura H, Kobayashi J, Kobayashi M, Ohizumi Y, Hirata Y (1986) Structure of agelasines, diterpenes having a 9-methyladeninium chromophore isolated from the okinawan marine spomge agelas nakamurai hoshino. Bull Chem Soc Jpn 59:2495–2504

    Article  CAS  Google Scholar 

  16. Mosman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  17. Colina C, Flores A, Rojas H, Acosta A, Castillo C, Garrido MR, Israel A, DiPolo R, Benaim G (2005) Ceramide increase cytoplasmic Ca2+ concentration in Jurkat T cells by liberation of calcium from intracellular stores and activation of a store-operated calcium channel. Arch Biochem Biophys 436:333–345

    Article  PubMed  CAS  Google Scholar 

  18. Colina C, Flores A, Castillo C, Garrido MR, Israel A, DiPolo R, Benaim G (2005) Ceramide-1-P induces Ca2+ mobilization in Jurkat T-cells by elevation of Ins(1, 4, 5)-P3 and activation of a store-operated calcium channel. Biochem Biophys Res Commun 336:54–60

    Article  PubMed  CAS  Google Scholar 

  19. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  20. Eletr S, Inesi G (1972) Phospholipid orientation in sarcoplasmic membranas: spin-label ESR and proton NMR studies. Biochim Biophys Acta 282:174–179

    Article  PubMed  CAS  Google Scholar 

  21. Suju M, Davila M, Poleo G, Docampo R, Benaim G (1996) Phosphatidylethanol stimulates the plasma-membrane calcium pump from human erythrocytes. Biochem J 317:933–938

    PubMed  CAS  Google Scholar 

  22. Fiske CH, SubbaRow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  23. Benaim G, Cervino V, Lopez-Estraño C, Weitzman C (1994) Ethanol stimulates the plasma membrane calcium pump from human erythrocytes. Biochim Biophys Acta 1195:141–148

    Article  PubMed  CAS  Google Scholar 

  24. Benaim G, Sanders JM, García-Marchan Y, Colina C, Lira R, Caldera AR, Payares G, Sanoja C, Burgos JM, Leon-Rossell A, Concepcion JL, Schijman AG, Levin M, Oldfield E, Urbina JA (2006) Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconasol. J Med Chem 49:892–899

    Article  PubMed  CAS  Google Scholar 

  25. Kagawa S, Gu J, Honda T, McDonnell TJ, Swisher SG, Roth JA, Fang B (2001) Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not for cell death. Clin Cancer Res 7:1474–1480

    PubMed  CAS  Google Scholar 

  26. Benaim G, Bermúdez R, Urbina J (1990) Ca2+ transport in isolated mitochondrial vesicles from Leishmania braziliensis promastigotes. Mol Biochem Parasitol 39:61–68

    Article  PubMed  CAS  Google Scholar 

  27. Grupta S (2002) Decision between life and death during TNF-induced signaling. J Clin Immunol 22:270–278

    Article  Google Scholar 

  28. Tang D, Lahti JM, Kidd VJ (2000) Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 275:9303–9307

    Article  PubMed  CAS  Google Scholar 

  29. Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocrine Rev 14:133–151

    CAS  Google Scholar 

  30. Bortner CD, Oldenburg NB, Cidlowski JA (1995) The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–26

    Article  PubMed  CAS  Google Scholar 

  31. Prevarskaya N, Skryma R, Shuba Y (2004) Ca2+ homeostasis in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun 322:1326–1335

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashi M, Nakamura H, Wu HM, Kobayashi J, Ohizumi Y (1987) Mode of inhibition of brain sodium-potassium ATPase by agelasidines and agelasines from a sea sponge. Arch Biochem Biophys 259:179–184

    Article  PubMed  CAS  Google Scholar 

  33. Pedersen P, Carafoli E (1987) Ion ATPases, Ubiquity, properties and significance to cell function. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  34. Demaurex N, Distelhorst C (2003) Apoptosis-the calcium connection. Science 300:65–67

    Article  PubMed  CAS  Google Scholar 

  35. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW (2006) Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 6:6–213

    Article  Google Scholar 

  36. Mooney LM, Al-Sakkaf KA, Brown BL, Dobson PR (2002) Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br J Cancer 87:909–917

    Article  PubMed  CAS  Google Scholar 

  37. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  PubMed  CAS  Google Scholar 

  38. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14:996–1007

    Article  PubMed  Google Scholar 

  39. Christensen SB, Skytte DM, Denmeade SR, Dionne C, Møller JV, Nissen P, Isaacs JT (2009) A Trojan horse in drug development: targeting of thapsigargins towards prostate cancer cells. Anticancer Agents Med Chem 9:276–294

    PubMed  CAS  Google Scholar 

  40. Vandecaetsbeek I, Christensen SB, Liu H, Van Veldhoven PP, Waelkens E, Eggermont J, Raeymaekers L, Møller JV, Nissen P, Wuytack F, Vangheluwe P (2011) Thapsigargin affinity purification of intracellular P(2A)-type Ca(2+) ATPases. Biochim Biophys Acta 1813:1118–1127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fondo Nacional de Ciencia, Tecnologia e Investigación Venezuela (FONACIT) (G-2001000637), and from the Consejo de Desarrollo Científico y Humanístico (C.D.C.H.-U.C.V.), Universidad Central de Venezuela (PI 03-00-7380-2008/2) to G.B. A.A.P. and A.M. were supported by a graduate student fellowship program from the FONACIT, Venezuela.

Conflict of interest

The authors declare that there is not Conflict of Interest concerning this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Benaim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimentel, A.A., Felibertt, P., Sojo, F. et al. The marine sponge toxin agelasine B increases the intracellular Ca2+ concentration and induces apoptosis in human breast cancer cells (MCF-7). Cancer Chemother Pharmacol 69, 71–83 (2012). https://doi.org/10.1007/s00280-011-1677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1677-x

Keywords

Navigation