Skip to main content

Advertisement

Log in

Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage

  • Review Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Intestinal mucositis occurs as a consequence of cytotoxic treatment through multiple mechanisms including induction of crypt cell death (apoptosis) and cytostasis. The molecular control of these actions throughout the gastrointestinal tract has yet to be fully elucidated; however, they are known to involve p53, the Bcl-2 family and caspases. This review will provide an overview of current research as well as identify areas where gaps in knowledge exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    PubMed  CAS  Google Scholar 

  2. Akgul C, Moulding DA, Edwards SW (2004) Alternative splicing of Bcl-2-related genes: functional consequences and potential therapeutic applications. Cell Mol Life Sci 61:2189–2199

    PubMed  CAS  Google Scholar 

  3. Anilkumar TV, Sarraf CE, Hunt T, Alison MR (1992) The nature of cytotoxic drug-induced cell death in murine intestinal crypts. Br J Cancer 65:552–558

    PubMed  CAS  Google Scholar 

  4. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    PubMed  CAS  Google Scholar 

  5. Araki E, Ishikawa M, Iigo M, Koide T, Itabashi M, Hoshi A (1993) Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J Cancer Res 84:697–702

    PubMed  CAS  Google Scholar 

  6. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  CAS  Google Scholar 

  7. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915

    PubMed  CAS  Google Scholar 

  8. Bartek J, Lukas J (2003) DNA repair: damage alert. Nature 421:486–488

    PubMed  CAS  Google Scholar 

  9. Beck PL, Wong JF, Li Y, Swaminathan S, Xavier RJ, Devaney KL, Podolsky DK (2004) Chemotherapy- and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology 126:796–808

    PubMed  CAS  Google Scholar 

  10. Benchimol S (2001) p53-dependent pathways of apoptosis. Cell Death Differ 8:1049–1051

    PubMed  CAS  Google Scholar 

  11. Booth D, Potten CS (2001) Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst Monographs 29:16–20

    PubMed  CAS  Google Scholar 

  12. Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647

    PubMed  CAS  Google Scholar 

  13. Boushey RP, Yusta B, Drucker DJ (2001) Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res 61:687–693

    PubMed  CAS  Google Scholar 

  14. Bradham CA, Qian T, Streetz C, Trautwein C, Brenner DA, Lemasters JJ (1998) The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 18:6353–6364

    PubMed  CAS  Google Scholar 

  15. Cao S, Black JD, Troutt AB, Rustum YM (1998) Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cancer Res 58:3270–3274

    PubMed  CAS  Google Scholar 

  16. Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351

    PubMed  CAS  Google Scholar 

  17. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    PubMed  CAS  Google Scholar 

  18. Chen C, Edelstein LC, Gelinas C (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20:2687–2695

    PubMed  Google Scholar 

  19. Chernavsky AC, Rubio AE, Vanzulli S, Rubinstein N, de Rosa S, Fainboim L (2002) Evidences of the involvement of Bak, a member of the Bcl-2 family of proteins, in active coeliac disease. Autoimmunity 35:29–37

    PubMed  CAS  Google Scholar 

  20. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    PubMed  CAS  Google Scholar 

  21. Chu KU, Higashide S, Evers BM, Rajaraman S, Ishizuka J, Townsend CM, Thompson JC (1994) Bombesin improves survival from methotrexate-induced enterocolitis. Ann Surg 220:570–576; discussion 576–577

    PubMed  CAS  Google Scholar 

  22. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  23. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    PubMed  CAS  Google Scholar 

  24. Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    PubMed  CAS  Google Scholar 

  25. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    PubMed  CAS  Google Scholar 

  26. Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220–228

    PubMed  CAS  Google Scholar 

  27. Decary S, Decesse JT, Ogryzko V, Reed JC, Naguibneva I, Harel-Bellan A, Cremisi CE (2002) The retinoblastoma protein binds the promoter of the survival gene bcl-2 and regulates its transcription in epithelial cells through transcription factor AP-2. Mol Cell Biol 22:7877–7888

    PubMed  CAS  Google Scholar 

  28. Decker-Baumann C, Buhl K, Frohmuller S, von Herbay A, Dueck M, Schlag PM (1999) Reduction of chemotherapy-induced side-effects by parenteral glutamine supplementation in patients with metastatic colorectal cancer. Eur J Cancer 35:202–207

    PubMed  CAS  Google Scholar 

  29. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76:2420–2424

    PubMed  CAS  Google Scholar 

  30. Dippold WG, Jay G, DeLeo AB, Khoury G, Old LJ (1981) p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci U S A 78:1695–1699

    PubMed  CAS  Google Scholar 

  31. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004). In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24:6728–6741

    PubMed  CAS  Google Scholar 

  32. Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    PubMed  CAS  Google Scholar 

  33. Fadeel B, Zhivotovsky B, Orrenius S (1999) All along the watchtower: on the regulation of apoptosis regulators. FASEB J 13:1647–1657

    PubMed  CAS  Google Scholar 

  34. Finlay CA, HindsPW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    PubMed  CAS  Google Scholar 

  35. Fleischer A, Rebollo A, Ayllon V (2003) BH3-only proteins: the lords of death. Arch Immunol Ther Exp 51:9–17

    CAS  Google Scholar 

  36. Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci U S A 97:5723–5728

    PubMed  CAS  Google Scholar 

  37. Funk MA, Baker DH (1991) Effect of soy products on methotrexate toxicity in rats. J Nutr 121:1684–1692

    PubMed  CAS  Google Scholar 

  38. Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH (2001) Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 280:C1540–C1554

    PubMed  CAS  Google Scholar 

  39. Gauthier R, Laprise P, Cardin E, Harnois C, Plourde A, Reed JC, Vezina A, Vachon PH (2001) Differential sensitivity to apoptosis between the human small and large intestinal mucosae: linkage with segment-specific regulation of BCL-2 homologs and involvement of signaling pathways. J Cell Biochem 82:339–355

    PubMed  CAS  Google Scholar 

  40. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    PubMed  CAS  Google Scholar 

  41. Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J (2001) Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903:66–73

    PubMed  CAS  Google Scholar 

  42. Gibson LF, Fortney J, Magro G, Ericson SG, Lynch JP, Landreth KS (1999) Regulation of BAX and BCL-2 expression in breast cancer cells by chemotherapy. Breast Cancer Res Treat 55:107–117

    PubMed  CAS  Google Scholar 

  43. Gibson RJ, Keefe DM, Clarke JM, Regester GO, Thompson FM, Goland GJ, Edwards BG, Cummins AG (2002) The effect of keratinocyte growth factor on tumour growth and small intestinal mucositis after chemotherapy in the rat with breast cancer. Cancer Chemother Pharmacol 50:53–58

    PubMed  CAS  Google Scholar 

  44. Gibson RJ, Keefe DM, Thompson FM, Clarke JM, Goland GJ, Cummins AG (2002) Effect of interleukin-11 on ameliorating intestinal damage after methotrexate treatment of breast cancer in rats. Dig Dis Sci 47:2751–2757

    PubMed  CAS  Google Scholar 

  45. Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM (2003) Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol 18:1095–1100

    PubMed  CAS  Google Scholar 

  46. Gibson RJ, Bowen JM, Keefe DM (2005) Palifermin reduces diarrhea and increases survival following irinotecan treatment in tumor-bearing DA rats. Int J Cancer 116:464–470

    PubMed  CAS  Google Scholar 

  47. Govindarajan R (2002) Irinotecan/thalidomide in metastatic colorectal cancer. Oncology (Huntington) 16:23–26

    Google Scholar 

  48. Govindarajan R, Heaton KM, Broadwater R, Zeitlin A, Lang NP, Hauer-Jensen M (2000) Effect of thalidomide on gastrointestinal toxic effects of irinotecan. Lancet 356:566–567

    PubMed  CAS  Google Scholar 

  49. Green D, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    PubMed  CAS  Google Scholar 

  50. Greider C, Chattopadhyay A, Parkhurst C, Yang E (2002) BCL-x(L) and BCL2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases. Oncogene 21:7765–7775

    PubMed  CAS  Google Scholar 

  51. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    PubMed  CAS  Google Scholar 

  52. Grossmann J, Artinger M, Grasso AW, Kung HJ, Scholmerich J, Fiocchi C, Levine AD (2001) Hierarchical cleavage of focal adhesion kinase by caspases alters signal transduction during apoptosis of intestinal epithelial cells (comment). Gastroenterology 120:79–88

    PubMed  CAS  Google Scholar 

  53. Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci U S A 92:4507–4511

    PubMed  CAS  Google Scholar 

  54. Hall PA, Coates PJ, Ansari B, Hopwood D (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107:3569–3577

    PubMed  CAS  Google Scholar 

  55. Hanada M, Aime-Sempe C, Sato T, Reed JC (1995) Structure–function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270:11962–11969

    PubMed  CAS  Google Scholar 

  56. Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89:1845–1853

    PubMed  CAS  Google Scholar 

  57. Hengartner MO (1999) Programmed cell death in the nematode C. elegans. Ann N Y Acad Sci 887:92–104

    PubMed  Google Scholar 

  58. Hengartner MO, Horvitz HR (1994) The ins and outs of programmed cell death during C. elegans development. Philos Trans R Soc Lond B Biol Sci 345:243–246

    PubMed  CAS  Google Scholar 

  59. Henry-Mowatt J, Dive C, Martinou JC, James D (2004) Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 23:2850–2860

    PubMed  CAS  Google Scholar 

  60. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    PubMed  CAS  Google Scholar 

  61. Herr I, Wilhelm D, Bohler T, Angel P, Debatin KM (1997) Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 16:6200–6208

    PubMed  CAS  Google Scholar 

  62. Hershko T, Ginsberg D (2004) Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279:8627–8634

    PubMed  CAS  Google Scholar 

  63. Hickman JA, Potten CS, Merritt AJ, Fisher TC (1994). Apoptosis and cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 345:319–325

    PubMed  CAS  Google Scholar 

  64. Hinds P, Finlay C, Levine AJ (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739–746

    PubMed  CAS  Google Scholar 

  65. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CM, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    PubMed  CAS  Google Scholar 

  66. Horie T, Matsumoto H, Kasagi M, Sugiyama A, Kikuchi M, Karasawa C, Awazu S, Itakura Y, Fuwa T (1999) Protective effect of aged garlic extract on the small intestinal damage of rats induced by methotrexate treatment. Planta Med 65:545–548

    PubMed  CAS  Google Scholar 

  67. Howarth G, Francis GL, Cool JC, Xu X, Byard RW, Read LC (1996) Milk growth factors enriched from cheese whey ameliorate intestinal damage by methotrexate when administered orally to rats. J Nutr 126:2519–2530

    PubMed  CAS  Google Scholar 

  68. Howarth GS, Shoubridge CA (2001) Enhancement of intestinal growth and repair by growth factors. Curr Opin Pharmacol 1:568–574

    PubMed  CAS  Google Scholar 

  69. Hsu YT, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A 94:3668–3672

    PubMed  CAS  Google Scholar 

  70. Hu ZB, Minden MD, McCulloch EA (1996) Regulation of the synthesis of bcl-2 protein by growth factors. Leukemia 10:1925–1929

    PubMed  CAS  Google Scholar 

  71. Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397–419

    PubMed  CAS  Google Scholar 

  72. Ijiri K, Potten CS (1983) Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation. Br J Cancer 47:175–185

    PubMed  CAS  Google Scholar 

  73. Ijiri K, Potten CS (1987) Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer 55:113–123

    PubMed  CAS  Google Scholar 

  74. Ikuno N, Soda H, Watanabe M, Oka M (1995) Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum. J Natl Cancer Inst 87:1876–1883

    PubMed  CAS  Google Scholar 

  75. Inomata A, Horii I, Suzuki K (2002) 5-Fluorouracil-induced intestinal toxicity: what determines the severity of damage to murine intestinal crypt epithelia? Toxicol Lett 133:231–240

    PubMed  CAS  Google Scholar 

  76. Jones BA, Gores GJ (1997) Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine. Am J Physiol 273:G1174–G1188

    PubMed  CAS  Google Scholar 

  77. Junqueira L, Carnerio J, Long J (eds) (1986) Basic histology. Lange, Los Altos, pp 327–353

    Google Scholar 

  78. Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N, Getz G, Domany E, Givol D (2001) DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene 20:2225–2234

    PubMed  CAS  Google Scholar 

  79. Keefe DM (1998) The effect of cytotoxic chemotherapy on the mucosa of the small intestine. M.D. thesis, University of Adelaide, Adelaide

  80. Keefe DM (2004) Gastrointestinal mucositis: a new biological model. Support Care Cancer 12:6–9

    PubMed  Google Scholar 

  81. Keefe DM, Cummins AG, Dale BM, Kotasek D, Robb TA, Sage RE (1997) Effect of high-dose chemotherapy on intestinal permeability in humans. Clin Sci 92:385–389

    PubMed  CAS  Google Scholar 

  82. Keefe DM, Brealey J, Goland GJ, Cummins AG (2000) Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47:632–637

    PubMed  CAS  Google Scholar 

  83. Keefe DM, Gibson RJ, Hauer-Jensen M (2004) Gastrointestinal mucositis. Semin Oncol Nurs 20:38–47

    PubMed  Google Scholar 

  84. Kelekar A, Thompson CB (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8:324–330

    PubMed  CAS  Google Scholar 

  85. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 17:7040–7046

    PubMed  CAS  Google Scholar 

  86. Kerr JF (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    PubMed  CAS  Google Scholar 

  87. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  88. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy [erratum appears in Cancer 1994 Jun 15; 73(12):3108]. Cancer 73:2013–2026

    PubMed  CAS  Google Scholar 

  89. Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK (1999) Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci U S A 96:14476–14481

    PubMed  CAS  Google Scholar 

  90. Kitada S, Krajewski S, Miyashita T, Krajewska M, Reed JC (1996) Gamma-radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12:187–192

    PubMed  CAS  Google Scholar 

  91. Kitada S, Krajewska M, Zhang X, Scudiero D, Zapata JM, Wang HG, Shabaik A, Tudor G, Krajewski S, Myers TG, Johnson GS, Sausville EA, Reed JC (1998) Expression and localization of pro-apoptotic Bcl-2 family protein bad in normal human tissue and tumor cell lines. Am J Pathol 152:51–61

    PubMed  CAS  Google Scholar 

  92. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis (comment). Science 275:1132–1136

    PubMed  CAS  Google Scholar 

  93. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072

    PubMed  CAS  Google Scholar 

  94. Komarov PG (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    PubMed  CAS  Google Scholar 

  95. Komarova EA, Gudkov AV (1998) Could p53 be a target for therapeutic suppression? Semin Cancer Biol 8:389–400

    PubMed  CAS  Google Scholar 

  96. Komarova EA, Gudkov AV (2000) Suppression of p53: a new approach to overcome side effects of antitumor therapy. Biochemistry (Moscow) 65:41–48

    CAS  Google Scholar 

  97. Komarova EA, Gudkov AV (2001) Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 62:657–667

    PubMed  CAS  Google Scholar 

  98. Komarova EA, Neznanov N, Komarov PG, Chernov MV, Wang K, Gudkov AV (2003) p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J Biol Chem 278:15465–15468

    PubMed  CAS  Google Scholar 

  99. Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, Goldblum JR, Gudkov AV (2004) Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23:3265–3271

    PubMed  CAS  Google Scholar 

  100. Konopleva M, Zhao S, Xie Z, Segall H, Younes A, Claxton DF, Estrov Z, Kornblau SM, Andreeff M (1999) Apoptosis. Molecules and mechanisms. Adv Exp Med Biol 457:217–236

    PubMed  CAS  Google Scholar 

  101. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336

    PubMed  CAS  Google Scholar 

  102. Krajewski S, Krajewska M, Shabaik A, Wang HG, Irie S, Fong L, Reed JC (1994) Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res 54:5501–5507

    PubMed  CAS  Google Scholar 

  103. Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K, Reed JC (1995) Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146:1309–1319

    PubMed  CAS  Google Scholar 

  104. Krajewski S, Krajewska M, Reed JC (1996) Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res 56:2849–2855

    PubMed  CAS  Google Scholar 

  105. Krajewska M, Zapata JM, Meinhold-Heerlein I, Hedayat H, Monks A, Handorf H, Shabaik A, Bebendorf L, Lallioniemi O, Kim H, Heifenberger L, Reed JC, Krajewski S (2002) Expression of Bcl-2 family member Bid in normal and malignant tissues. Neoplasia 4:129–140

    PubMed  CAS  Google Scholar 

  106. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    PubMed  CAS  Google Scholar 

  107. Lane DP, Lu X, Hupp T, Hall PA (1994) The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond B Biol Sci 345:277–280

    PubMed  CAS  Google Scholar 

  108. Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6:443–450

    PubMed  CAS  Google Scholar 

  109. Leung LK, Wang TT (1999) Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7. Breast Cancer Res Treat 55:73–83

    PubMed  CAS  Google Scholar 

  110. Linette GP, Li Y, Roth K, Korsmeyer SJ (1996) Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci U S A 93:9545–9552

    PubMed  CAS  Google Scholar 

  111. Linseman DA, Phelps RA, Bouchard RJ, Le SS, Laessig TA, McClure ML, Heidenreich KA (2002) Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci 22:9287–9297

    PubMed  CAS  Google Scholar 

  112. Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    PubMed  CAS  Google Scholar 

  113. Liu QA, Hengartner MO (1999) The molecular mechanism of programmed cell death in C. elegans. Ann N Y Acad Sci 887:92–104

    PubMed  CAS  Google Scholar 

  114. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    PubMed  CAS  Google Scholar 

  115. Marshman E, Ottewell PD, Potten CS, Watson AJ (2001) Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol 195:285–292

    PubMed  CAS  Google Scholar 

  116. Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574

    PubMed  CAS  Google Scholar 

  117. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187:1261–1271

    PubMed  CAS  Google Scholar 

  118. McDonnell TJ, Beham A, Sarkiss M, Andersen MM, Lo P (1996) Importance of the Bcl-2 family in cell death regulation. Experientia 52:1008–1017

    PubMed  CAS  Google Scholar 

  119. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP, Hall PA (1994) The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54:614–617

    PubMed  CAS  Google Scholar 

  120. Merritt AJ, Potten CS, Watson AJ, Loh DY, Nakayama K, Hickman JA (1995) Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci 108:2261–2271

    PubMed  CAS  Google Scholar 

  121. Mitchell EP, Schein PS (1984) Gastrointestinal toxicity of chemotherapeutic agents. In: Perry MC, Yarbro JW (eds) Toxicity of chemotherapy. Grune and Stratton, Orlando, pp 269–289

    Google Scholar 

  122. Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81:151–157

    PubMed  CAS  Google Scholar 

  123. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    PubMed  CAS  Google Scholar 

  124. Miyashita T, Harigai M, Hanada M, Reed JC (1994) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54:3131–3135

    PubMed  CAS  Google Scholar 

  125. Morelli D, Menard S, Colnaghi MI, Balsari A (1996) Oral administration of anti-doxorubicin monoclonal antibody prevents chemotherapy-induced gastrointestinal toxicity in mice. Cancer Res 56:2082–2085

    PubMed  CAS  Google Scholar 

  126. Moss SF, Agarwal B, Arber N, Buan RJ, Krajewska M, Krajewski S, Reed JC, Holt PR (1996) Increased intestinal Bak expression results in apoptosis. Biochem Biophys Res Commun 223:199–203

    PubMed  CAS  Google Scholar 

  127. Muller M, Scaffidi CA, Galle PA, Stremmel W, Krammer PH (1998) The role of p53 and the CD95 (APO-1/Fas) death system in chemotherapy-induced apoptosis. Eur Cytokine Netw 9:685–686

    PubMed  CAS  Google Scholar 

  128. Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    PubMed  CAS  Google Scholar 

  129. Nagai Y, Horie T, Awazu S (1993) Vitamin A, a useful biochemical modulator capable of preventing intestinal damage during methotrexate treatment. Pharmacol Toxicol 73:69–74

    Article  PubMed  CAS  Google Scholar 

  130. Nagata S (1994) Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. Philos Trans R Soc Lond B Biol Sci 345:281–287

    PubMed  CAS  Google Scholar 

  131. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    PubMed  CAS  Google Scholar 

  132. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A 95:14681–14686

    PubMed  CAS  Google Scholar 

  133. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    PubMed  CAS  Google Scholar 

  134. Nita ME, Nagawa H, Tominaga O, Tsuno N, Fujii S, Sasaki S, Fu CG, Takenoue T, Tsuruo T, Muto T (1998) 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br J Cancer 78:986–992

    PubMed  CAS  Google Scholar 

  135. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    PubMed  CAS  Google Scholar 

  136. Okuno S, Shimizu S, Ito T, Nomura M, Hamada E, Tsujimoto Y, Matsuda H (1998) Bcl-2 prevents caspase-independent cell death. J Biol Chem 273:34272–34277

    PubMed  CAS  Google Scholar 

  137. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    PubMed  CAS  Google Scholar 

  138. O’Reilly LA, Cullen L, Visvader J, Lindeman GJ, Print C, Bath ML, Huang DC, Strasser A (2000) The proapoptotic BH3-only protein bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. Am J Pathol 157:449–461

    PubMed  CAS  Google Scholar 

  139. O’Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DC, Strasser A (2001) Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ 8:486–494

    PubMed  CAS  Google Scholar 

  140. Papaconstantinou HT, Chung DH, Zhang W, Ansari NH, Hellmich MR, Townsend CM, Ko TC (2000) Prevention of mucosal atrophy: role of glutamine and caspases in apoptosis in intestinal epithelial cells. J Gastrointest Surg 4:416–423

    PubMed  CAS  Google Scholar 

  141. Papaconstantinou HT, Xie C, Zhang W, Ansari NH, Hellmich MR, Townsend CM, Ko TC (2001) The role of caspases in methotrexate-induced gastrointestinal toxicity. Surgery 130:859–865

    PubMed  CAS  Google Scholar 

  142. Park J, Hockenbery DM (1996) BCL-2, a novel regulator of apoptosis. J Cell Biochem 60:12–17

    PubMed  CAS  Google Scholar 

  143. Pico J, Avila-Garavito A, Naccache P (1998) Mucositis: its occurrence, consequences and treatment in the oncology setting. Oncologist 3:446–451

    PubMed  Google Scholar 

  144. Pinkoski MJ, Brunner T, Green DR, Lin T (2000) Fas and Fas ligand in gut and liver. Am J Physiol Gastrointest Liver Physiol 278:G354–G366

    PubMed  CAS  Google Scholar 

  145. Potten CS (1990) A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol 58:925–973

    PubMed  CAS  Google Scholar 

  146. Potten CS (1992) The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev 11:179–195

    PubMed  CAS  Google Scholar 

  147. Potten CS (1997) Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol 273:G253–G257

    PubMed  CAS  Google Scholar 

  148. Potten CS (1998) Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 353:821–830

    PubMed  CAS  Google Scholar 

  149. Potten CS, Grant HK (1998) The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Br J Cancer 78:993–1003

    PubMed  CAS  Google Scholar 

  150. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  151. Potten CS, Owen G, Hewitt D, Chadwick CA, Hendry H, Lord BI, Woolford LB (1995) Stimulation and inhibition of proliferation in the small intestinal crypts of the mouse after in vivo administration of growth factors. Gut 36:864–873

    PubMed  CAS  Google Scholar 

  152. Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243

    PubMed  CAS  Google Scholar 

  153. Potten CS, Wilson JW, Booth C (1997) Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15:82–93

    PubMed  CAS  Google Scholar 

  154. Pratesi G, Perego P, Zunino F (2001) Role of Bcl-2 and its post-transcriptional modification in response to antitumor therapy. Biochem Pharmacol 61:381–386

    PubMed  CAS  Google Scholar 

  155. Pritchard DM, Potten CS, Hickman JA (1998) The relationships between p53-dependent apoptosis, inhibition of proliferation, and 5-fluorouracil-induced histopathology in murine small intestinal epithelia. Cancer Res 58:5453–5465

    PubMed  CAS  Google Scholar 

  156. Pritchard DM, Potten CS, Korsmeyer SJ, Roberts S, Hickman JA (1999) Damage-induced apoptosis in intestinal epithelia from bcl-2-null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene 18:7287–7293

    PubMed  CAS  Google Scholar 

  157. Pritchard DM, Print C, O’Reilly L, Adams JM, Potten CS, Hickman JA (2000) Bcl-w is an important determinant of damage-induced apoptosis in epithelia of small and large intestine. Oncogene 19:3955–3959

    PubMed  CAS  Google Scholar 

  158. Puthalakath DC, Huang LA, O’Reilly SM, King A, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296

    PubMed  CAS  Google Scholar 

  159. Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9:505–512

    PubMed  CAS  Google Scholar 

  160. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos PE, Geilen CC (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117:333–340

    PubMed  CAS  Google Scholar 

  161. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    PubMed  CAS  Google Scholar 

  162. Renehan A, Gossiel R, Davidson SE, Roberts SA, Chadwick C, Wilks DP, Potten CS, Hendry JH, Hunter RD, Renehan AG (1995) What is apoptosis, and why is it important? Radiother Oncol 37:1–9

    PubMed  Google Scholar 

  163. Renehan AG, Bach SP, Potten CS (2001) The relevance of apoptosis for cellular homeostasis and tumorigenesis in the intestine. Can J Gastroenterol 15:166–176

    PubMed  CAS  Google Scholar 

  164. Rosse T (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391:486–499

    Google Scholar 

  165. Sabbatini M, Bozzo C, Castellucci M, Cannas M (2004) Morphometric quantification of apoptotic stages in cell culture. Cells Tissues Organs 178:139–145

    PubMed  CAS  Google Scholar 

  166. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4:842–849

    PubMed  CAS  Google Scholar 

  167. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    PubMed  CAS  Google Scholar 

  168. Schafer T, Scheuer C, Roemer K, Menger MD, Vollmar B (2003) Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death. FASEB J 17:660–667

    PubMed  CAS  Google Scholar 

  169. Schinzel A, Kaufmann T, Borner C (2004) Bcl-2 family members: intracellular targeting, membrane-insertion, and changes in subcellular localization. Biochim Biophys Acta 1644:95–105

    PubMed  CAS  Google Scholar 

  170. Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A 92:7834–7838

    PubMed  CAS  Google Scholar 

  171. Sherwood L (1997) Human physiology—from cells to systems, 3rd edn. Wadsworth, Belmont, pp 446–600

    Google Scholar 

  172. Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, Morishita Y, Akira S, Taniguchi T, Tanaka N (2003) Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17:2233–2238

    PubMed  CAS  Google Scholar 

  173. Shimizu S, Konishi A, Kodama T, Tsujimoto Y (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. [erratum appears in Proc Natl Acad Sci U S A 2000 Aug 1; 97(16):9347]. Proc Natl Acad Sci U S A 97:3100–3105

    PubMed  CAS  Google Scholar 

  174. Shinohara H, Killion JJ, Kuniyasu H, Kumar R, Fidler IJ (1998) Prevention of intestinal toxic effects and intensification of irinotecan’s therapeutic efficacy against murine colon cancer liver metastases by oral administration of the lipopeptide JBT 3002. Clin Cancer Res 4:2053–2063

    PubMed  CAS  Google Scholar 

  175. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074

    PubMed  CAS  Google Scholar 

  176. Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818

    PubMed  CAS  Google Scholar 

  177. Smith ND, Rubenstein JN, Eggener SE, Kozlowski JM (2003) The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol 169:1219–1228

    PubMed  CAS  Google Scholar 

  178. Solary E, Favre B, Caillot D, Sidaner I, Guy H (2000) Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 14:1833–1849

    PubMed  CAS  Google Scholar 

  179. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284

    PubMed  CAS  Google Scholar 

  180. Sonis ST (2004) Pathobiology of mucositis. Semin Oncol Nurs 20:11–15

    PubMed  Google Scholar 

  181. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025

    PubMed  Google Scholar 

  182. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL (1998) Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18:3509–3517

    PubMed  CAS  Google Scholar 

  183. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Ann Rev Biochem 69:217–245

    PubMed  CAS  Google Scholar 

  184. Strasser A, Puthalakath H, Bouillet P, Huang DC, O’Connor L, O’Reilly LA, Cullen L, Cory S, Adams JM (2000) The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann N Y Acad Sci 917:541–548

    PubMed  CAS  Google Scholar 

  185. Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366:151–165

    PubMed  CAS  Google Scholar 

  186. Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T (1996) Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 56:3752–3757

    PubMed  CAS  Google Scholar 

  187. Tamatani M, Ogawa S, Nunez G, Tohyama M (1998) Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide. Cell Death Differ 5:911–919

    PubMed  CAS  Google Scholar 

  188. Taminiau JA, Gall DG, Hamilton JR (1980) Response of the rat small-intestine epithelium to methotrexate. Gut 21:486–492

    PubMed  CAS  Google Scholar 

  189. Tarnawski AS, Szabo I (2001) Apoptosis—programmed cell death and its relavence to gastrointestinal epithelium: survival signal from the matrix. Gastroenterology 120:294–299

    PubMed  CAS  Google Scholar 

  190. Tenenbaun L (1994) Cancer chemotherapy and biotherapy. Saunders, Philadephia, pp 7–8

    Google Scholar 

  191. Thornberry NA (1998) Caspases: key mediators of apoptosis. Chem Biol 5:R97–R103

    PubMed  CAS  Google Scholar 

  192. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  193. Tran CD, Howarth GS, Coyle P, Philcox JC, Rofe AM, Butler RN (2003) Dietary supplementation with zinc and a growth factor extract derived from bovine cheese whey improves methotrexate-damaged rat intestine. Am J Clin Nutr 77:1296–1303

    PubMed  CAS  Google Scholar 

  194. Trier JS (1962) Morphologic alterations induced by methotrexate in the mucosa of human proximal intestine. I. Serial observations by light microscopy. Gastroenterology 42:295–305

    PubMed  CAS  Google Scholar 

  195. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042

    PubMed  Google Scholar 

  196. van’t Land B, Meijer HP, Frerichs J, Koetsier M, Jager D, Smeets RL, M’Rabet L, Hoijer M (2002) Transforming growth factor-beta2 protects the small intestine during methotrexate treatment in rats possibly by reducing stem cell cycling. Br J Cancer 87:113–118

    Google Scholar 

  197. van’t Land B, van Beek NM, van den Berg JJ, M’Rabet L (2004) Lactoferrin reduces methotrexate-induced small intestinal damage, possibly through inhibition of GLP-2-mediated epithelial cell proliferation. Dig Dis Sci 49:425–433

    PubMed  CAS  Google Scholar 

  198. Verburg M, Renes IB, Meijer HP, Taminiau HP, Buller HA, Einerhand AW, Dekker J (2000) Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats. Am J Physiol Gastrointest Liver Physiol 279:G1037–G1047

    PubMed  CAS  Google Scholar 

  199. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    PubMed  CAS  Google Scholar 

  200. Vollmar B, El-Gibaly AM, Scheuer C, Strik MW, Bruch HP, Menger HP (2002) Acceleration of cutaneous wound healing by transient p53 inhibition. Lab Invest 82:1063–1071

    PubMed  CAS  Google Scholar 

  201. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    PubMed  CAS  Google Scholar 

  202. Wang JY, Naderi S, Chen TT (2001) Role of retinoblastoma tumor suppressor protein in DNA damage response. Acta Oncol 40:689–695

    PubMed  CAS  Google Scholar 

  203. Watson AJ (1995) Necrosis and apoptosis in the gastrointestinal tract. Aliment Pharmacol Ther 9:215–226

    Article  PubMed  CAS  Google Scholar 

  204. Wei MC (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    PubMed  CAS  Google Scholar 

  205. Weller M (1998) Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res 292:435–445

    PubMed  CAS  Google Scholar 

  206. Westcarr S, Farshori P, Wyche J, Anderson WA (1999) Apoptosis and differentiation in the crypt-villus unit of the rat small intestine. J Submicrosc Cyto Pathol 31:15–30

    CAS  Google Scholar 

  207. Wilson JW, Pritchard DM, Hickman JA, Potten CS (1998) Radiation-induced p53 and p21WAF-1/CIP1 expression in the murine intestinal epithelium: apoptosis and cell cycle arrest. Am J Pathol 153:899–909

    PubMed  CAS  Google Scholar 

  208. Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88:386–401

    PubMed  CAS  Google Scholar 

  209. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    PubMed  CAS  Google Scholar 

  210. Yin XM, Oltvai ZN, Veis-Novack DJ, Linette GP (1995) Bcl-2 gene family and the regulation of programmed cell death. Biochim Biophys Acta 1271:63–66

    PubMed  Google Scholar 

  211. Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-α supresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120:191–205

    PubMed  CAS  Google Scholar 

  212. Zhu M, Yu QS, Cutler RG, Culmsee CW, Holloway HW, Lahiri DK, Mattson MP, Greig NH (2002) Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J Med Chem 45:5090–5097

    PubMed  CAS  Google Scholar 

  213. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15:1481–1486

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne M. Bowen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, J.M., Gibson, R.J., Cummins, A.G. et al. Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage. Support Care Cancer 14, 713–731 (2006). https://doi.org/10.1007/s00520-005-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-005-0004-7

Keywords

Navigation