Skip to main content

Advertisement

Log in

Tanespimycin pharmacokinetics: a randomized dose-escalation crossover phase 1 study of two formulations

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This crossover phase 1 study compared the pharmacokinetics and safety of tanespimycin, an HSP90 inhibitor, when administered as a suspension for injection and tanespimycin injection, a Cremophor-based formulation.

Methods

Two sequential dose groups (275 mg/m2 [n = 5] and 340 mg/m2 [n = 12]) were randomized to first receive tanespimycin as a suspension or Cremophor-based formulation infusion followed 7 days later by the other formulation. Serial blood samples were collected over a 24-h period on days 1 and 8 to measure pharmacokinetics of tanespimycin and its major metabolite 17-AG. Patients completing the crossover phase continued treatment with the suspension formulation twice weekly for 2 out of 3 weeks.

Results

Estimates for tanespimycin CLT (12.76 to 17.28 L/h/m2), Vz (69.54 to 78.51 L/m2) and t1/2 (3 to 4 h) were consistent across doses and formulations. AUC ratio of 17-AG to tanespimycin was approximately 60% in the 275 mg/m2 treatment arm and 93% to 117% in the 340 mg/m2 treatment arm. For the 340 mg/m2 treatment arm, AUC(INF) was similar between both formulations; Cmax was 17% lower for the suspension versus the injection formulation. The most common adverse events were diarrhea, nausea, vomiting, dizziness, headache, fatigue, and elevated aspartate aminotransferase. Drug-related myelosuppression was not observed. The best response was stable disease in 7 of 11 evaluable patients.

Conclusions

The pharmacokinetics of tanespimycin and its major metabolite 17-AG were similar for the tanespimycin suspension for injection and the tanespimycin injection, a Cremophor-containing product. Tanespimycin was well tolerated when administered as a suspension formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. An WG, Schnur RC, Neckers L, Blagosklonny MV (1997) Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother Pharmacol 40:60–64

    Article  PubMed  CAS  Google Scholar 

  2. Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030

    Article  PubMed  CAS  Google Scholar 

  3. Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F, Campbell M, Walton M, Lakhani S, Kaye S, Workman P, Judson I (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  PubMed  CAS  Google Scholar 

  4. Basso AD, Solit DB, Munster PN, Rosen N (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159–1166

    Article  PubMed  CAS  Google Scholar 

  5. Dye D, Watkins J (1980) Suspected anaphylactic reaction to Cremophor EL. Br Med J 280:1353

    Article  PubMed  CAS  Google Scholar 

  6. Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL (1998) Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res 58:2385–2396

    PubMed  CAS  Google Scholar 

  7. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL (2001) Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol 47:291–302

    Article  PubMed  CAS  Google Scholar 

  8. Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S, Adjei AA, Sloan J, Atherton P, Vasile V, Salazaar S, Adjei A, Croghan G, Erlichman C (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087

    Article  PubMed  CAS  Google Scholar 

  9. Grem JL, Morrison G, Guo XD, Agnew E, Takimoto CH, Thomas R, Szabo E, Grochow L, Grollman F, Hamilton JM, Neckers L, Wilson RH (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23:1885–1893

    Article  PubMed  CAS  Google Scholar 

  10. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    Article  PubMed  CAS  Google Scholar 

  11. Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJ, Dai NT, Heldebrant MP, Vroman BT, Smith BD, Karp JE, Eyck CJ, Erlichman C, Kaufmann SH, Karnitz LM (2005) Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 106:318–327

    Article  PubMed  CAS  Google Scholar 

  12. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R, Munshi NC, Richardson PG, Hideshima T, Chauhan D, Gu X, Bailey C, Joseph M, Libermann TA, Rosen NS, Anderson KC (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100

    Article  PubMed  CAS  Google Scholar 

  13. Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R, Ma W, Wheler J, Rosen N, Norton L, Cropp GF, Johnson RG, Hannah AL, Hudis CA (2007) Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 25:5410–5417

    Article  PubMed  CAS  Google Scholar 

  14. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen DM, Desai S, Chen A, Weiser TS, Schrump DS (2000) Modulation of metastasis phenotypes of non-small cell lung cancer cells by 17-allylamino 17-demethoxy geldanamycin. Ann Thorac Surg 70:1853–1860

    Article  PubMed  CAS  Google Scholar 

  16. Nowakowski GS, McCollum AK, Ames MM, Mandrekar SJ, Reid JM, Adjei AA, Toft DO, Safgren SL, Erlichman C (2006) A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 12:6087–6093

    Article  PubMed  CAS  Google Scholar 

  17. Ramanathan RK, Egorin MJ, Eiseman JL, Ramalingam S, Friedland D, Agarwala SS, Ivy SP, Potter DM, Chatta G, Zuhowski EG, Stoller RG, Naret C, Guo J, Belani CP (2007) Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res 13:1769–1774

    Article  PubMed  CAS  Google Scholar 

  18. Ramanathan RK, Trump DL, Eiseman JL, Belani CP, Agarwala SS, Zuhowski EG, Lan J, Potter DM, Ivy SP, Ramalingam S, Brufsky AM, Wong MK, Tutchko S, Egorin MJ (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11:3385–3391

    Article  PubMed  CAS  Google Scholar 

  19. Richardson P, Chanan-Khan AA, Lonial S, Krishnan A, Alsina M, Carroll M, Adler K, Cropp G, Mitsiades C, Johnson R, Hannah A, Anderson KC (2006) A Multicenter Phase 1 Clinical Trial of Tanespimycin (KOS-953) + Bortezomib (BZ): Encouraging Activity and Manageable Toxicity in Heavily Pre-Treated Patients with Relapsed Refractory Multiple Myeloma (MM). ASH Ann Meet Abstr 108:406

    Google Scholar 

  20. Richardson PG, Chanan-Khan A, Lonial S, Krishnan A, Carroll M, Alsina M, Albitar M, Berman D, Kaplita S, Anderson KC (2009) Tanespimycin + bortezomib in patients with relapsed and refractory multiple myeloma: final results of a phase 1/2 study. American Society of Clinical Oncology (ASCO), Orlando, FL

    Google Scholar 

  21. Richardson PG, Chanan-Khan AA, Alsina M, Doss D, Landrigan B, Kettner D, Albitar M, Mitsiades C, Cropp GF, Johnson RG, Hannah AL, Anderson KC (2005) Safety and Activity of KOS-953 in Patients with Relapsed Refractory Multiple Myeloma (MM): Interim Results of a Phase 1 Trial. ASH Annu Meet Abstr 106:361

    Google Scholar 

  22. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041

    Article  PubMed  CAS  Google Scholar 

  23. Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci USA 93:14536–14541

    Article  PubMed  CAS  Google Scholar 

  24. Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270:24585–24588

    Article  PubMed  CAS  Google Scholar 

  25. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  PubMed  CAS  Google Scholar 

  26. Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF, Kelly WK, DeLaCruz A, Curley T, Heller G, Larson S, Schwartz L, Egorin MJ, Rosen N, Scher HI (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13:1775–1782

    Article  PubMed  CAS  Google Scholar 

  27. Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, Heller G, Tong W, Cordon-Cardo C, Agus DB, Scher HI, Rosen N (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 8:986–993

    PubMed  CAS  Google Scholar 

  28. Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8:370–374

    Article  PubMed  CAS  Google Scholar 

  29. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  30. Usmani SZ, Bona R, Li Z (2009) 17 AAG for HSP90 inhibition in cancer—from bench to bedside. Curr Mol Med 9:654–664

    Article  PubMed  CAS  Google Scholar 

  31. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and their families. We would also like to thank Mary Dominiecki, PhD; Anne Lambert, MS; Robert O’Beirne; and Andrew Graham for graphics and editorial assistance. The study was sponsored by Bristol-Myers Squibb (and previously Kosan Biosciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Burris III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burris, H.A., Berman, D., Murthy, B. et al. Tanespimycin pharmacokinetics: a randomized dose-escalation crossover phase 1 study of two formulations. Cancer Chemother Pharmacol 67, 1045–1054 (2011). https://doi.org/10.1007/s00280-010-1398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1398-6

Keywords

Navigation