Skip to main content

Advertisement

Log in

Everolimus and PTK/ZK show synergistic growth inhibition in the orthotopic BL16/BL6 murine melanoma model

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Everolimus (RAD001, Afinitor) is an mTORC1 pathway inhibitor, and vatalanib (PTK/ZK) is a pan VEGF-R tyrosine kinase inhibitor (TKI). These two drugs have been shown to have overlapping but also distinct anti-angiogenic effects. Consequently, we investigated the pharmacokinetics (PK) and pharmacodynamics (PD) of their combination in vivo.

Methods

Murine melanoma B16/BL6 cells were grown orthotopically in BL6/C57 mice by injection into the derma of both ears to create a primary tumour which metastasized rapidly to the cervical lymph nodes. Mice were treated daily p.o. with PTK/ZK (100 mg/kg) or everolimus (1 mg/kg) or their combination, and anti-tumour efficacy (PD) assessed. In the same model, plasma PK of everolimus was measured following single doses of the monotherapy or combination schedules.

Results

Two independent experiments showed that combination of everolimus and PTK/ZK caused at least additive increases in anti-tumour activity compared to either monotherapy, without increases in toxicity. Pooling the data to improve the statistical power demonstrated the interactions to be synergistic. PK modelling showed that although PTK/ZK increased everolimus plasma concentrations by about twofold, this PK drug–drug interaction could not account for the increased anti-tumour effect of the combination. Modelling of the PTK/ZK dose–response curve in this model suggested that any effect of everolimus on the PK of PTK/ZK was unlikely to affect efficacy. Measurement of changes in tumour and plasma VEGF levels at the endpoint of therapy confirmed earlier observations of differential effects of these two agents.

Conclusions

The combination of everolimus and PTK/ZK hold promise for the treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

LN:

Lymph node

VEGF:

Vascular endothelial growth factor

VEGF-R:

Vascular endothelial growth factor receptor

References

  1. Boulay A, Lane HA (2007) The mammalian target of rapamycin kinase and tumor growth inhibition. Recent Results Cancer Res 172:99–124

    Article  CAS  PubMed  Google Scholar 

  2. Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR (2007) RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 13:4261–4270

    Article  CAS  PubMed  Google Scholar 

  3. Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR (2007) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413

    Article  CAS  PubMed  Google Scholar 

  4. Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, Jauch KW, Guba M, Bruns CJ (2008) Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res 14:892–900

    Article  CAS  PubMed  Google Scholar 

  5. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622

    Article  CAS  PubMed  Google Scholar 

  6. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O’Reilly T, Persohn E, Rösel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60:2178–2189

    CAS  PubMed  Google Scholar 

  7. Rudin M, McSheehy PM, Allegrini PR, Rausch M, Baumann D, Becquet M, Brecht K, Brueggen J, Ferretti S, Schaeffer F, Schnell C, Wood J (2005) PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo. NMR Biomed 18:308–321

    Article  CAS  PubMed  Google Scholar 

  8. Ferretti S, Allegrini PR, O’Reilly T, Schnell C, Stumm M, Wartmann M, Wood J, McSheehy PM (2005) Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure. Clin Cancer Res 11:7773–7784

    Article  CAS  PubMed  Google Scholar 

  9. Sini P, Samarzija I, Baffert F, Littlewood-Evans A, Schnell C, Theuer A, Christian S, Boos A, Hess-Stumpp H, Foekens JA, Setyono-Han B, Wood J, Hynes NE (2008) Inhibition of multiple vascular endothelial growth factor receptors (VEGFR) blocks lymph node metastases but inhibition of VEGFR-2 is sufficient to sensitize tumor cells to platinum-based chemotherapeutics. Cancer Res 68:1581–1592

    Article  CAS  PubMed  Google Scholar 

  10. LaMontagne K, Littlewood-Evans A, Schnell C, O’Reilly T, Wyder L, Sanchez T, Probst B, Butler J, Wood A, Liau G, Billy E, Theuer A, Hla T, Wood J (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66:221–231

    Article  CAS  PubMed  Google Scholar 

  11. Hirayama R, Sato K, Hirokawa K, Chang MP, Mishima Y, Makinodan T (1984) Different metastatic modes of malignant melanoma implanted in the ear of young and old mice. Cancer Immunol Immunother 18:209–214

    Article  CAS  PubMed  Google Scholar 

  12. O’Reilly T, McSheehy PMJ, Kawai R, Kretz O, McMahon L, Bryeggen J, Bruelisauer A, Gschwind HP, Allegrini PR, Lane HA (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65:625–639

    Article  PubMed  Google Scholar 

  13. Clarke R (1997) Issues in experimental design and endpoint analyses in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Res Treat 46:255–287

    Article  CAS  PubMed  Google Scholar 

  14. Taylor JK (1990) Statistical techniques for data analysis. Lewis Publishers, Boca Raton, pp 81–83

    Google Scholar 

  15. Ferretti S, Allegrini PR, Becquet MM, McSheehy PM (2009) Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia 11:874–881

    CAS  PubMed  Google Scholar 

  16. Kuhn B, Jacobsen W, Christians U, Benet LZ, Kollman PA (2001) Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J Med Chem 44:2027–2034

    Article  CAS  PubMed  Google Scholar 

  17. Paez-Ribes M, Allen E, Hudock J (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  CAS  PubMed  Google Scholar 

  18. Alphonso A, Alahari SK (2009) Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 11:1264–1271

    CAS  PubMed  Google Scholar 

  19. Eberhard A, Kahlert S, Goede V, Hemerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    CAS  PubMed  Google Scholar 

  20. Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamaura M (2005) Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 69:159–166

    Article  PubMed  Google Scholar 

  21. Speca JC, Mears AL, Creel PA, Yenser SE, Bendell JC, Morse MA, Hurwitz HI, Armstrong AJ, George DJ (2007) Phase I study of PTK787/ZK222584 (PTK/ZK) and RAD001 for patients with advanced solid tumors and dose expansion in renal cell carcinoma patients. J Clin Oncol 25(18_suppl) ASCO Meeting Abstract: 5039

    Google Scholar 

  22. Dy GK, Croghan GA, Qi Y, Glockner J, Hanson L, Roos M, Tan AD, Molina JR, Adjei AA (2008) Phase I trial of the mTOR inhibitor RAD001 (R) in combination with two schedules of the vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor PTK787/ZK 222584 (P) in patients (pts) with advanced solid tumors. J Clin Oncol 26 (15_suppl) ASCO Meeting Abstract: 2529

    Google Scholar 

Download references

Acknowledgments

We thank Marc Hattenberger, Melanie Muller, Hans-Peter Mueller, Andreas Theuer, Beatrice Probst, Marina Maurer, and Julianne Vaxelaire for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. J. McSheehy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 79.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Reilly, T., Lane, H.A., Wood, J.M. et al. Everolimus and PTK/ZK show synergistic growth inhibition in the orthotopic BL16/BL6 murine melanoma model. Cancer Chemother Pharmacol 67, 193–200 (2011). https://doi.org/10.1007/s00280-010-1307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1307-z

Keywords

Navigation