Skip to main content

Advertisement

Log in

Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non–small-cell lung cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

ABCG2 is a half-size ATP-binding cassette transporter implicated in cellular gefitinib transport. Reportedly, the c.421C > A ABCG2 gene polymorphism was associated with gefitinib-induced diarrhea in Caucasian patients with non–small-cell lung cancer. Since c.421C > A ABCG2, resulting in p.Q141K substitution, is more prevalent in Asian populations, the putative relationship between gefitinib-induced adverse effects and this functional polymorphism was investigated in Japanese patients. c.376C > T, resulting in truncated, non-functional ABCG2, was also investigated.

Methods

ABCG2 gene polymorphisms were evaluated in 75 patients with non–small-cell lung cancer treated with gefitinib 250 mg/day orally, and results were correlated with treatment-related adverse effects.

Results

Forty (53.3%) patients harbored c.421A ABCG2 on at least one allele, while the remaining 35 (46.7%) were wild type for c.421C > A. No significant group difference was observed in frequency of gefitinib-related diarrhea or other adverse effects. In addition, the only one patient homozygous for the c.421A allele in this study was not affected with gefitinib-induced diarrhea or interstitial lung disease. Two patients (2.7%) were found to harbor the c.376T allele heterozygously. One of the two patients harbored both the c.376T and the c.421A genotypes on distinct alleles. Gefitinib-related interstitial lung disease and severe diarrhea were noted in neither of the two patients.

Conclusions

In this Japanese population, we did not find an evident association between ABCG2 polymorphisms, c.376C > T and c.421C > A, and susceptibility to gefitinib-induced adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arteaga CL, Johnson DH (2001) Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr Opin Oncol 13:491–498

    Article  PubMed  CAS  Google Scholar 

  2. Ciardiello F (2000) Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 60:25–32

    Article  PubMed  CAS  Google Scholar 

  3. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, Bianco AR, Tortora G (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6:2053–2063

    PubMed  CAS  Google Scholar 

  4. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG (2000) Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 6:4885–4892

    PubMed  CAS  Google Scholar 

  5. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21:2237–2246

    Article  PubMed  CAS  Google Scholar 

  6. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290:2149–2158

    Article  PubMed  CAS  Google Scholar 

  7. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, Von Pawel J, Pluzanska A, Gatzemeier U, Grous J, Ochs JS, Averbuch SD, Wolf MK, Rennie P, Fandi A, Johnson DH (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 22:777–784

    Article  PubMed  CAS  Google Scholar 

  8. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, Wolf MK, Krebs AD, Averbuch SD, Ochs JS, Grous J, Fandi A, Johnson DH (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol 22:785–794

    Article  PubMed  CAS  Google Scholar 

  9. Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, Thongprasert S, Tan EH, Pemberton K, Archer V, Carroll K (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366:1527–1537

    Article  PubMed  CAS  Google Scholar 

  10. Chang A, Parikh P, Thongprasert S, Tan EH, Perng RP, Ganzon D, Yang CH, Tsao CJ, Watkins C, Botwood N, Thatcher N (2006) Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J Thorac Oncol 1:847–855

    Article  PubMed  Google Scholar 

  11. Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu YL, Li LY, Watkins CL, Sellers MV, Lowe ES, Sun Y, Liao ML, Osterlind K, Reck M, Armour AA, Shepherd FA, Lippman SM, Douillard JY (2008) Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 372:1809–1818

    Article  PubMed  CAS  Google Scholar 

  12. Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare, Japan (2004). In: pharmaceuticals and medical devices safety information No. 206 (in Japanese). Available via http://www.sap-cc.org/Pharma/anzen.files/an206.htm Accessed 15 June 2009

  13. Allikmets R, Schriml L, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–5339

    PubMed  CAS  Google Scholar 

  14. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    Article  PubMed  CAS  Google Scholar 

  15. Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59:8–13

    PubMed  CAS  Google Scholar 

  16. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

  17. Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99:15649–15654

    Article  PubMed  CAS  Google Scholar 

  18. van Herwaarden AE, Jonker JW, Wagenaar E, Brinkhuis RF, Schellens JH, Beijnen JH, Schinkel AH (2003) The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine. Cancer Res 63:6447–6452

    PubMed  Google Scholar 

  19. Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y (2003) Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 64:610–618

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649

    Article  PubMed  CAS  Google Scholar 

  21. Kawabata S, Oka M, Shiozawa K, Tsukamoto K, Nakatomi K, Soda H, Fukuda M, Ikegami Y, Sugahara K, Yamada Y, Kamihira S, Doyle LA, Ross DD, Kohno S (2001) Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 280:1216–1223

    Article  PubMed  CAS  Google Scholar 

  22. Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, Miki Y, Sugimoto Y (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616

    PubMed  CAS  Google Scholar 

  23. Sparreboom A, Gelderblom H, Marsh S, Ahluwalia R, Obach R, Principe P, Twelves C, Verweij J, McLeod HL (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C > A genotype. Clin Pharmacol Ther 76:38–44

    Article  PubMed  CAS  Google Scholar 

  24. Kim IS, Kim HG, Kim DC, Eom HS, Kong SY, Shin HJ, Hwang SH, Lee EY, Lee GW (2008) ABCG2 Q141K polymorphism is associated with chemotherapy-induced diarrhea in patients with diffuse large B-cell lymphoma who received frontline rituximab plus cyclophosphamide/doxorubicin/vincristine/prednisone chemotherapy. Cancer Sci 99:2496–2501

    Article  PubMed  CAS  Google Scholar 

  25. Hu LL, Wang XX, Chen X, Chang J, Li C, Zhang Y, Yang J, Jiang W, Zhuang SM (2007) BCRP gene polymorphisms are associated with susceptibility and survival of diffuse large B-cell lymphoma. Carcinogenesis 28:1740–1744

    Article  PubMed  CAS  Google Scholar 

  26. Korenaga Y, Naito K, Okayama N, Hirata H, Suehiro Y, Hamanaka Y, Matsuyama H, Hinoda Y (2005) Association of the BCRP C421A polymorphism with nonpapillary renal cell carcinoma. Int J Cancer 117:431–434

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y, Ishikawa T (2009) Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res 26:469–479

    Article  PubMed  CAS  Google Scholar 

  28. Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 3:1119–1125

    PubMed  CAS  Google Scholar 

  29. Nakamura Y, Oka M, Soda H, Shiozawa K, Yoshikawa M, Itoh A, Ikegami Y, Tsurutani J, Nakatomi K, Kitazaki T, Doi S, Yoshida H, Kohno S (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546

    Article  PubMed  CAS  Google Scholar 

  30. Elkind NB, Szentpétery Z, Apáti A, Ozvegy-Laczka C, Várady G, Ujhelly O, Szabó K, Homolya L, Váradi A, Buday L, Kéri G, Német K, Sarkadi B (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 65:1770–1777

    Article  PubMed  CAS  Google Scholar 

  31. Cusatis G, Gregorc V, Li J, Spreafico A, Ingersoll RG, Verweij J, Ludovini V, Villa E, Hidalgo M, Sparreboom A, Baker SD (2006) Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 98:1739–1742

    Article  PubMed  CAS  Google Scholar 

  32. de Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A, McLeod HL (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10:5889–5894

    Article  PubMed  Google Scholar 

  33. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    PubMed  Google Scholar 

  34. Itoda M, Saito Y, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Suzuki H, Sugiyama Y, Ozawa S, Sawada J (2003) Eight novel single nucleotide polymorphisms in ABCG2/BCRP in Japanese cancer patients administered irinotacan. Drug Metab Pharmacokinet 18:212–217

    Article  PubMed  Google Scholar 

  35. Kim HS, Sunwoo YE, Ryu JY, Kang HJ, Jung HE, Song IS, Kim EY, Shim JC, Shon JH, Shin JG (2007) The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine. Br J Clin Pharmacol 64:645–654

    Article  PubMed  CAS  Google Scholar 

  36. Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I, Ishikawa T (2006) Functional validation of the genetic polymorphisms of human ATP-Binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 70:287–296

    PubMed  CAS  Google Scholar 

  37. Leggas M, Panetta JC, Zhuang Y, Schuetz JD, Johnston B, Bai F, Sorrentino B, Zhou S, Houghton PJ, Stewart CF (2006) Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 66:4802–4807

    Article  PubMed  CAS  Google Scholar 

  38. Song P, Lamba JK, Zhang L, Schuetz E, Shukla N, Meibohm B, Yates CR (2006) G2677T and C3435T genotype and haplotype are associated with hepatic ABCB1 (MDR1) expression. J Clin Pharmacol 46:373–379

    Article  PubMed  CAS  Google Scholar 

  39. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadée W (2005) Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C > T affects mRNA stability. Pharmacogenet Genomics 15:693–704

    Article  PubMed  CAS  Google Scholar 

  40. Meissner K, Heydrich B, Jedlitschky G, zu Schwabedissen HM, Mosyagin I, Dazert P, Eckel L, Vogelgesang S, Warzok RW, Bohm M, Lehmann C, Wendt M, Cascorbi I, Kroemer HK (2006) The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem 54:215–221

    Article  PubMed  CAS  Google Scholar 

  41. Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD, Schuetz EG (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13:19–28

    Article  PubMed  CAS  Google Scholar 

  42. Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Kieback DG, Kaye SB, Gianni L, Harris A, Bjork T, Averbuch SD, Feyereislova A, Swaisland H, Rojo F, Albanell J (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20:4292–4302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by research grant from Dokkyo Medical University and Grant-in-Aid for Scientific Research (C) (20590372) from the Ministry of Education, Science, Sports, and Culture of Japan.

Disclosure of potential conflict of interest

The authors declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Imai.

Additional information

K. Akasaka and T. Kaburagi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akasaka, K., Kaburagi, T., Yasuda, S. et al. Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non–small-cell lung cancer. Cancer Chemother Pharmacol 66, 691–698 (2010). https://doi.org/10.1007/s00280-009-1211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1211-6

Keywords

Navigation