Skip to main content

Advertisement

Log in

Targeting MET transcription as a therapeutic strategy in multiple myeloma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is an incurable indolent malignancy with an average lifespan of 3 years, underscoring the need for new therapies. Studies have shown that the receptor MET and its ligand hepatocyte growth factor play an important role in proliferation, migration, adhesion, and survival of MM cells. Hence, an effective way to decrease MET receptor may act as a viable therapeutic option. Since MET mRNA and protein have short half-lives, we hypothesized that transcription inhibitor will reduce MET transcript and protein levels and this will lead to cell death. Pharmacological (flavopiridol) and molecular (shRNA) transcription inhibitor were used to impede formation of MET transcripts. The diminution of global RNA synthesis with flavopiridol was related to phosphorylation status of Ser residues (r 2 = 0.90 and 0.92 for Ser2 and Ser5) on the C-terminal-domain of RNA polymerase II. This was accompanied with a time-dependent decrease in MET transcript, which reached to less than 30% (1 μM) and 10% (3 μM) by 24 h. This decline in transcript level was directly associated with a reduction in MET protein level (r 2 = 0.82) and resulted in cell death. Assessment of MET in MM survival was done by using shRNA targeted towards MET. When cells were infected with shRNA viral construct, there was increased cell death with a decline in MET transcript and protein. Taken together, our study demonstrates that MET plays a critical role in the survival and removal or lowering of MET by flavopiridol or shRNA results in the demise of MM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTD:

C-terminal domain

CLL:

Chronic lymphocytic leukemia

CDK:

Cyclin-dependent kinase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HGF:

Hepatocyte growth factor

MM:

Multiple myeloma

PARP:

Poly (ADP-ribose) polymerase

RNA Pol II:

RNA polymerase II

References

  1. Andersen NF, Standal ST, Nielsen JL, Heickendorff L, Borset M, Sorensen FB, Abildgaard N (2005) Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogensis and survival. Br J Haematol 2:210–217

    Article  Google Scholar 

  2. Blagosklonny MV (2004) Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle 3:1537–1542

    PubMed  CAS  Google Scholar 

  3. Bommert K, Bargou RC, Stuhmer T (2006) Signalling and survival pathways in multiple myeloma. Eur J Cancer 42:1574–1580

    Article  PubMed  CAS  Google Scholar 

  4. Byrd JC, Peterson BL, Gabrilove J, Odenike OM, Grever MR, Rai K, Larson RA (2005) Treatment of relapsed chronic lymphocytic leukemia by 72-hour continuous infusion or 1-hour bolus infusion of flavopiridol: results from cancer and leukemia group B study 19805. Clin Cancer Res 11:4176–4181

    Article  PubMed  CAS  Google Scholar 

  5. Byrd JC, Lin TS, Dalton JT, Wu D, Phelps MA, Fischer B, Moran M, Blum KA, Rovin B, Brooker-McEldowney M, Broering S, Schaaf LJ, Johnson AJ, Lucas DM, Heerema NA, Lozanski G, Young DC, Suarez JR, Colevas AD, Grever MR (2007) Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109:399–404

    Article  PubMed  CAS  Google Scholar 

  6. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ (1996) Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 56:2973–2978

    PubMed  CAS  Google Scholar 

  7. Chao SH, Price DH (2001) Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276:31793–31799

    Article  PubMed  CAS  Google Scholar 

  8. Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH (2000) Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275:28345–28348

    Article  PubMed  CAS  Google Scholar 

  9. Chen R, Keating MJ, Gandhi V, Plunkett W (2005) Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106:2513–2519

    Article  PubMed  CAS  Google Scholar 

  10. Chrzanowska-Lightowlers ZM, Preiss T, Lightowlers RN (1994) Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. J Biol Chem 269:27322–27328

    PubMed  CAS  Google Scholar 

  11. Dai Y, Hamm TE, Dent P, Grant S (2006) Cyclin D1 overexpression increases the susceptibility of human U266 myeloma cells to CDK inhibitors through a process involving p130-, p107- and E2F-dependent S phase entry. Cell Cycle 5:437–446

    PubMed  CAS  Google Scholar 

  12. Dalton WS, Bergsagel PL, Kuehl WM, Anderson KC, Harousseau JL (2001) Multiple myeloma. Hematology (Am Soc Hematol Educ Program) 1:157–177

  13. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410

    Article  PubMed  CAS  Google Scholar 

  14. Derksen PW, De Gorter DJ, Meijer HP, Bende RJ, Van Dijk M, Lokhorst HM, Bloem AC, Spaargaren M, Pals ST (2003) The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17:764–774

    Article  PubMed  CAS  Google Scholar 

  15. Dispenzieri A, Gertz MA, Lacy MQ, Geyer SM, Fitch TR, Fenton RG, Fonseca R, Isham CR, Ziesmer SC, Erlichman C, Bible KC (2006) Flavopiridol in patients with relapsed or refractory multiple myeloma: a phase 2 trial with clinical and pharmacodynamic end-points. Haematologica 91:390–393

    PubMed  CAS  Google Scholar 

  16. Du W, Hattori Y, Yamada T, Matsumoto K, Nakamura T, Sagawa M, Otsuki T, Niikura T, Nukiwa T, Ikeda Y (2007) NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells: molecular targeting of angiogenic growth factor. Blood 109:3042–3049

    Article  PubMed  CAS  Google Scholar 

  17. Flinn IW, Byrd JC, Bartlett N, Kipps T, Gribben J, Thomas D, Larson RA, Rai K, Petric R, Ramon-Suerez J, Gabrilove J, Grever MR (2005) Flavopiridol administered as a 24-hour continuous infusion in chronic lymphocytic leukemia lacks clinical activity. Leuk Res 29:1253–1257

    Article  PubMed  CAS  Google Scholar 

  18. Giordano S, Di Renzo MF, Narsimhan RP, Cooper CS, Rosa C, Comoglio PM (1989) Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene 4:1383–1388

    PubMed  CAS  Google Scholar 

  19. Gojo I, Zhang B, Fenton RG (2002) The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res 8:3527–3538

    PubMed  CAS  Google Scholar 

  20. Hallek M, Bergsagel PL, Anderson KC (1998) Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91:3–21

    PubMed  CAS  Google Scholar 

  21. Hov H, Holt RU, Ro TB, Fagerli U-M, Hjorth-Hansen H, Baykov V, Christensen JG, Waage A, Sundan A, Borset M (2004) A selective c-Met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells. Clin Cancer Res 10:6686–6694

    Article  PubMed  CAS  Google Scholar 

  22. Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C, Kaiser M, Sezer O (2006) Angiogenesis in multiple myeloma. Eur J Cancer 42:1581–1590

    Article  PubMed  CAS  Google Scholar 

  23. Jurado J, Prieto-Alamo MJ, Madrid-Risquez J, Pueyo C (2003) Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem 278:45546–45554

    Article  PubMed  CAS  Google Scholar 

  24. Krett NL, Zell JL, Halgren RG, Pillay S, Traynor AE, Rosen ST (1997) Cyclic adenosine-3′, 5′-monophosphate-mediated cytotoxicity in steroid sensitive and resistant myeloma. Clin Cancer Res 3:1781–1787

    PubMed  CAS  Google Scholar 

  25. Lam LT, Pickeral OK, Peng AC, Rosenwald A, Hurt EM, Giltnane JM, Averett LM, Zhao H, Davis RE, Sathyamoorthy M, Wahl LM, Harris ED, Mikovits JA, Monks AP, Hollingshead MG, Sausville EA, Staudt LM (2001) Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2: RESEARCH0041

  26. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K, Wisner L, Iorio M, Shakalya K, Garewal H, Nagle R, Bearss D (2007) A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 26:3909–3919

    Article  PubMed  CAS  Google Scholar 

  27. SA Maulik G, Kijima T, Ma PC, Morrison PT, Salgia R (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13:41–59

    Article  Google Scholar 

  28. Mitsiades CS, Mitsiades NS, Munshi NC, Richardson PG, Anderson KC (2006) The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 42:1564–1573

    Article  PubMed  CAS  Google Scholar 

  29. Moghul A, Lin L, Beedle A, Kanbour-Shakir A, DeFrances MC, Liu Y, Zarnegar R (1994) Modulation of c-MET proto-oncogene (HGF receptor) mRNA abundance by cytokines and hormones: evidence for rapid decay of the 8 kb c-MET transcript. Oncogene 9:2045–2052

    PubMed  CAS  Google Scholar 

  30. Pei X-Y, Dai Y, Grant S (2004) The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism. Mol Cancer Ther 3:1513–1524

    PubMed  CAS  Google Scholar 

  31. Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305

    Article  PubMed  CAS  Google Scholar 

  32. Piazza FA, Gurrieri C, Trentin L, Semenzato G (2007) Towards a new age in the treatment of multiple myeloma. Ann Hematol 86:159–172

    Article  PubMed  Google Scholar 

  33. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    Article  PubMed  CAS  Google Scholar 

  34. Roodman GD (2006) New potential targets for treating myeloma bone disease. Clin Cancer Res 12:6270s–6273s

    Article  PubMed  CAS  Google Scholar 

  35. Rosato RR, Dai Y, Almenara JA, Maggio SC, Grant S (2004) Potent antileukemic interactions between flavopiridol and TRAIL/Apo2L involve flavopiridol-mediated XIAP downregulation. Leukemia 18:1780–1788

    Article  PubMed  CAS  Google Scholar 

  36. Sedlacek HH (2001) Mechanisms of action of flavopiridol. Crit Rev Oncol Hematol 38:139–170

    Article  PubMed  CAS  Google Scholar 

  37. Seidel C, Borset M, Hjorth-Hansen H, Sundan A, Waage A (1998) Role of hepatocyte growth factor and its receptor c-met in multiple myeloma. Med Oncol 15:145–153

    Article  PubMed  CAS  Google Scholar 

  38. Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A, Waage A (1998) Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma study group. Blood 91:806–812

    PubMed  CAS  Google Scholar 

  39. Seidel C, Lenhoff S, Brabrand S, Anderson G, Standal T, Lanng-Nielsen J, Turesson I, Borset M, Waage A (2002) Hepatocyte growth factor in myeloma patients treated with high-dose chemotherapy. Br J Haematol 119:672–676

    Article  PubMed  CAS  Google Scholar 

  40. Semenov I, Akyuz C, Roginskaya V, Chauhan D, Corey SJ (2002) Growth inhibition and apoptosis of myeloma cells by the CDK inhibitor flavopiridol. Leuk Res 26:271–280

    Article  PubMed  CAS  Google Scholar 

  41. Shapiro GI (2004) Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res 10:4270s–4275s

    Article  PubMed  CAS  Google Scholar 

  42. Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, Vande Woude GF (2004) RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res 64:7962–7970

    Article  PubMed  CAS  Google Scholar 

  43. Sims RJ III, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18:2437–2468

    Article  PubMed  CAS  Google Scholar 

  44. Stellrecht CM, Krett N, Rosen S, Gandhi V (2004) Effect of 8-chloro-adenosine on MET expression and downstream activities in multiple myeloma. Proc Am Assoc Cancer Res 45:476–477

    Google Scholar 

  45. Stellrecht CM, Phillip CJ, Cervantes-Gomez F, Gandhi V (2007) Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase. Cancer Res 67:9913–9920

    Article  PubMed  CAS  Google Scholar 

  46. Tjin EPM, Groen RWJ, Vogelzang I, Derksen PWB, Klok MD, Meijer HP, van Eeden S, Pals ST, Spaargaren M (2006) Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood 107:760–768

    Article  PubMed  CAS  Google Scholar 

  47. Turesson I, Abildgaard N, Ahlgren T, Dahl I, Holmberg E, Hjorth M, Nielsen JL, Oden A, Seidel C, Waage A, Westin J, Wisloff F (1999) Prognostic evaluation in multiple myeloma: an analysis of the impact of new prognostic factors. Br J Haematol 106:1005–1012

    Article  PubMed  CAS  Google Scholar 

  48. Yu-Wen Zhang GFVW (2003) HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88:408–417

    Article  PubMed  Google Scholar 

  49. Zhang B, Gojo I, Fenton RG (2002) Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 99:1885–1893

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Frank Marini, PhD for allowing virus work to be done in his lab facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Gandhi.

Additional information

Supported by grants CA81534, CA85915, and CA100632 from the National Cancer Institute, Department of Health and Human Services and CA16672, the CCSG Core grant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure (PDF 2278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillip, C.J., Stellrecht, C.M., Nimmanapalli, R. et al. Targeting MET transcription as a therapeutic strategy in multiple myeloma. Cancer Chemother Pharmacol 63, 587–597 (2009). https://doi.org/10.1007/s00280-008-0770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0770-2

Keywords

Navigation