Skip to main content

Advertisement

Log in

Effect of a V-ATPase inhibitor, FR202126, in syngeneic mouse model of experimental bone metastasis

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

It has been demonstrated that vacuolar ATPase (V-ATPase) is involved in various aspects of bone metastasis. The aim of this study is to investigate the effect of the anti-bone resorptive activity of the V-ATPase inhibitor FR202126 on bone metastases in mice with metastatic breast cancer.

Method

As a spontaneous model of breast cancer metastasis to bone, mouse breast cancer cells, 4T1, were injected into the mammary fat pad in immunocompetent syngeneic mice. The mice were orally treated with FR202126 for 29 days. Tumor volume was measured once a week. Thirty days after the injection of the cells, the bone mineral density (BMD) of the proximal tibia was measured using peripheral quantitative computed tomography. Histomorphometric analysis of the distal femurs and the proximal tibiae was performed. To elucidate the mechanism behind the anti-osteolytic effect of FR202126, 4T1 cells were treated directly in vitro with FR202126. Cell viability was measured, and cell invasion was assessed using matrigel.

Results

Oral administration of FR202126 significantly increased BMD by reducing the eroded bone surface ratio. While FR202126 is known to potently inhibit osteoclast mediated bone resorption, it did not prevent invasion by cancer cells or their proliferation.

Conclusion

The V-ATPase inhibitor FR202126 was found to be effective at ameliorating osteolysis induced by metastatic breast cancer, even when the cancer cells themselves are not significantly affected by it. These results suggest that the anti-bone resorptive effect of the V-ATPase inhibitor might be useful for treating bone metastases associated with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aibe K, Yazawa H, Abe K, Teramura K, Kumegawa M, Kawashima H, Honda K (1996) Substrate specificity of recombinant osteoclast-specific cathepsin K from rabbits. Biol Pharm Bull 19:1026–1031

    PubMed  CAS  Google Scholar 

  2. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  3. Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, Beutler JA, McKee TC, Bowman BJ, Bowman EJ (2001) Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-ATPases. J Pharmacol Exp Ther 297:114–120

    PubMed  CAS  Google Scholar 

  4. Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55:61–66

    PubMed  CAS  Google Scholar 

  5. Crichton MB, Nichols JE, Zhao Y, Bulun SE, Simpson ER (1996) Expression of transcripts of interleukin-6 and related cytokines by human breast tumors, breast cancer cells, and adipose stromal cells. Mol Cell Endocrinol 118:215–220

    Article  PubMed  CAS  Google Scholar 

  6. Elomaa I, Blomqvist C, Grohn P, Porkka L, Kairento AL, Selander K, Lamberg-Allardt C, Holmstrom T (1983) Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1:146–149

    Article  PubMed  CAS  Google Scholar 

  7. Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    PubMed  CAS  Google Scholar 

  8. Ghilardi JR, Rohrich H, Lindsay TH, Sevcik MA, Schwei MJ, Kubota K, Halvorson KG, Poblete J, Chaplan SR, Dubin AE, Carruthers NI, Swanson D, Kuskowski M, Flores CM, Julius D, Mantyh PW (2005) Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci 25:3126–3131

    Article  PubMed  CAS  Google Scholar 

  9. Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS (1996) Physiology and biochemistry of the kidney vacuolar H+-ATPase. Annu Rev Physiol 58:427–445

    Article  PubMed  CAS  Google Scholar 

  10. Gutteridge DH, Ward LC, Stewart GO, Retallack RW, Will RK, Prince RL, Criddle A, Bhagat CI, Stuckey BG, Price RI, Kent GN, Faulkner DL, Geelhoed E, Gan SK, Vasikaran S (1999) Paget’s disease: acquired resistance to one aminobisphosphonate with retained response to another. J Bone Miner Res 14:79–84

    PubMed  CAS  Google Scholar 

  11. Hu Y, Nyman J, Muhonen P, Väänänen HK, Laitala-Leinonen T (2005) Inhibition of the osteoclast V-ATPase by small interfering RNAs. FEBS Lett 579:4937–4942

    Article  PubMed  CAS  Google Scholar 

  12. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  PubMed  CAS  Google Scholar 

  13. Kurtzman SH, Anderson KH, Wang Y, Miller LJ, Renna M, Stankus M, Lindquist RR, Barrows G, Kreutzer DL (1999) Cytokines in human breast cancer: IL-1alpha and IL-1beta expression. Oncol Rep 6:65–70

    PubMed  CAS  Google Scholar 

  14. Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961

    Article  PubMed  CAS  Google Scholar 

  15. Laitala T, Väänänen HK (1994) Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H+-ATPase. J Clin Invest 93:2311–2318

    Article  PubMed  CAS  Google Scholar 

  16. Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    Article  PubMed  CAS  Google Scholar 

  17. Major P, Lortholary A, Hon J, Abdi E, Mills G, Menssen HD, Yunus F, Bell R, Body J, Quebe-Fehling E, Seaman J (2001) Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 19:558–567

    PubMed  CAS  Google Scholar 

  18. Manishen WJ, Sivananthan K, Orr FW (1986) Resorbing bone stimulates tumor cell growth. A role for the host microenvironment in bone metastasis. Am J Pathol 123:39–45

    CAS  Google Scholar 

  19. Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ (1993) Vacuolar-type H+-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265:C1015–C1029

    PubMed  CAS  Google Scholar 

  20. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61:4432–4436

    PubMed  CAS  Google Scholar 

  21. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  PubMed  CAS  Google Scholar 

  22. Niikura K, Takano M, Sawada M (2004) A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase. Br J Pharmacol 142:558–566

    Article  PubMed  CAS  Google Scholar 

  23. Niikura K, Takeshita N, Chida N (2005) A novel inhibitor of vacuolar ATPase, FR202126, prevents alveolar bone destruction in experimental periodontitis in rats. J Toxicol Sci 30:297–304

    Article  PubMed  CAS  Google Scholar 

  24. Niikura K, Takeshita N, Takano M (2005) A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application. J Bone Miner Res 20:1579–1588

    Article  PubMed  CAS  Google Scholar 

  25. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases–Nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  PubMed  CAS  Google Scholar 

  26. Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, Rosenqvist K, Smith I, Ottestad L, Legault S, Pajunen M, Nevantaus A, Mannisto E, Suovuori A, Atula S, Nevalainen J, Pylkkanen L (2002) Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol 20:3219–3224

    Article  PubMed  CAS  Google Scholar 

  27. Rabbani SA, Khalili P, Arakelian A, Pizzi H, Chen G, Goltzman D (2005) Regulation of parathyroid hormone-related peptide by estradiol: effect on tumor growth and metastasis in vitro and in vivo. Endocrinology 146:2885–2894

    Article  PubMed  CAS  Google Scholar 

  28. Ralston SH (1992) Medical management of hypercalcemia. Br J Clin Pharmacol 34:11–20

    PubMed  CAS  Google Scholar 

  29. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  PubMed  CAS  Google Scholar 

  30. Saarto T, Blomqvist C, Virkkunen P, Elomaa I (2001) Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 19:10–17

    PubMed  CAS  Google Scholar 

  31. Sennoune SR, Bakunts K, Martinez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martinez-Zaguilan R (2004) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  PubMed  CAS  Google Scholar 

  32. Sennoune SR, Luo D, Martinez-Zaguilan R (2004) Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys 40:185–206

    Article  PubMed  CAS  Google Scholar 

  33. Sun-Wada GH, Wada Y, Futai M (2004) Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. Biochim Biophys Acta 1658:106–114

    Article  PubMed  CAS  Google Scholar 

  34. Swallow CJ, Grinstein S, Rotstein OD (1990) A vacuolar type H+-ATPase regulates cytoplasmic pH in murine macrophages. J Biol Chem 265:7645–7654

    PubMed  CAS  Google Scholar 

  35. Torigoe T, Izumi H, Ise T, Murakami T, Uramoto H, Ishiguchi H, Yoshida Y, Tanabe M, Nomoto M, Kohno K (2002) Vacuolar H(+)-ATPase: functional mechanisms and potential as a target for cancer chemotherapy. Anticancer Drugs 13:237–243

    Article  PubMed  CAS  Google Scholar 

  36. Wax MB, Saito I, Tenkova T, Krupin T, Becker B, Nelson N, Brown D, Gluck SL (1997) Vacuolar H+-ATPase in ocular ciliary epithelium. Proc Natl Acad Sci USA 94:6752–6757

    Article  PubMed  CAS  Google Scholar 

  37. Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T (2000) Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88:2979–2988

    Article  PubMed  CAS  Google Scholar 

  38. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32:73–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Niikura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niikura, K. Effect of a V-ATPase inhibitor, FR202126, in syngeneic mouse model of experimental bone metastasis. Cancer Chemother Pharmacol 60, 555–562 (2007). https://doi.org/10.1007/s00280-006-0401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0401-8

Keywords

Navigation