Skip to main content

Advertisement

Log in

A phase II, pharmacokinetic, and biologic study of semaxanib and thalidomide in patients with metastatic melanoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: This phase II study evaluated the combination of semaxanib, a small molecule tyrosine kinase inhibitor of vascular endothelial growth factor (VEGF) receptor-2, and thalidomide in patients with metastatic melanoma to assess the efficacy, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of the combination. Patients and methods: Patients with metastatic melanoma, who had failed at least one prior biologic and/or chemotherapeutic regimen, were treated with escalating doses of thalidomide combined with a fixed dose of semaxanib. Results: Twelve patients were enrolled and received 44 courses of semaxanib at the fixed dose of 145 mg/m2 intravenously twice-weekly in combination with thalidomide, commencing at 200 mg daily with intrapatient dose escalation as tolerated. Treatment with semaxanib was initiated 1 day before thalidomide in the first course, permitting the assessment of the PKs of semaxanib alone (course 1) and in combination with thalidomide (course 2). The principal toxicities included deep venous thrombosis, headache, and lower extremity edema. Of ten patients evaluable for response, one complete response lasting 20 months and one partial response lasting 12 months were observed. Additionally, four patients had stable disease lasting from 2 to 10 months. The PKs of semaxanib were characterized by drug exposure parameters comparable to those observed in single-agent phase II studies, indicating the absence of major drug–drug interactions. Maximum semaximib plasma concentration values were 1.2–3.8 μg/ml in course 1 and 1.1–3.9 μg/ml in course 2. The mean terminal half-life was 1.3 ( ± 0.31) h. Biological studies revealed increasing serum VEGF concentrations following treatment in patients remaining on study for more than 4 months. Conclusion: The combination of semaxanib and thalidomide was feasible and demonstrated anti-tumor activity in patients with metastatic melanoma who had failed prior therapy. Further evaluations of therapeutic strategies that target multiple angiogenesis pathways may be warranted in patients with advanced melanoma and other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Murray T, Samuels A, et al (2003) Cancer statistics 2003. CA Cancer J Clin 53:5–26

    Article  PubMed  Google Scholar 

  2. Gloeckler Ries LA, Reichman ME, Lewis DR, et al (2003) Cancer survival and incidence from the surveillance, epidemiology, and end results (SEER) program. Oncologist 8:541–552

    Article  PubMed  Google Scholar 

  3. Anderson C, Buzaid AC, Legha SS (1995) Systemic treatment for advanced cutaneous melanoma. Oncology 9:1149–1158

    PubMed  CAS  Google Scholar 

  4. Einzig AI, Hochster H, Wiernik PH, et al (1991) A phase II study of taxol in patients with malignant melanoma. Invest New Drugs 9:59–64

    Article  PubMed  CAS  Google Scholar 

  5. Bedikian AY, Weiss GR, Legha SS, et al (1995) A phase II trial of docetaxel in patients with advanced cutaneous melanoma untreated with chemotherapy. J Clin Oncol 13:2895–2899

    PubMed  CAS  Google Scholar 

  6. Gorski DH, Leal AD, Goydos JS (2003) Differential expression of vascular endothelial growth factor A isoforms at different stages of melanoma progression. J Am Coll Surg 197:408–418

    Article  PubMed  Google Scholar 

  7. Erhard H, Rietveld FJ, van Altena MC, et al (1997) Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis. Melanoma Res 7(Suppl. 2):S19–S26

    PubMed  CAS  Google Scholar 

  8. Ugurel S, Rappl G, Tigen W, Reinhold U (2001) Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol 19:577–583

    PubMed  CAS  Google Scholar 

  9. Prewett M, Huber J, Li Y, et al (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth in several mouse and human tumors. Cancer Res 59:5209–5218

    PubMed  CAS  Google Scholar 

  10. Siemeister G, Schirner M, Weindel K, et al (1999) Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 59:3185–3191

    PubMed  CAS  Google Scholar 

  11. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  CAS  Google Scholar 

  12. Ng SSW, Brown M, Figg WD (2002) Thalidomide, an antiangiogenic agent with clinical activity in cancer. Biomed Pharmacother 56:194–199

    Article  PubMed  CAS  Google Scholar 

  13. Franks ME, Macpherson GR, Figg WD (2004) Thalidomide. Lancet 363:1802–1811

    Article  PubMed  CAS  Google Scholar 

  14. Keifer JA, Guttridge DC, Ashburner BP, et al (2001) Inhibition of NF-kappa B activity by thalidomide through suppression of I kappa B kinase activity. J Biol Chem 276:22383–22387

    Article  Google Scholar 

  15. Geitz H, Handt S, Zwingerberger K (1996) Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 31:213–221

    Article  PubMed  CAS  Google Scholar 

  16. Shinghal S, Metha J, Desikan R, et al (1999) Anti-tumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571

    Article  Google Scholar 

  17. Weber D, Rankin K, Gavino M, et al (2003) Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 21:16–19

    Article  PubMed  CAS  Google Scholar 

  18. Barlogie B, Desikan R, Eddlemon P, et al (2001) Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase II study of 169 patients. Blood 15:492–494

    Article  Google Scholar 

  19. Eisen T, Boshoff C, Mak I, et al (2000) Continuous low dose thalidomide: a phase II study I advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 82:812–817

    Article  PubMed  CAS  Google Scholar 

  20. Raza A, Meyer P, Dutt D, et al (2001) Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 98:958–965

    Article  PubMed  CAS  Google Scholar 

  21. Mesa RA, Steensma DP, Pardani A, et al (2003) A phase II trial of combination low dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 101:2534–2541

    Article  PubMed  CAS  Google Scholar 

  22. Pawlak WZ, Legha SS (2004) Phase II study of thalidomide in patients with metastatic melanoma. Melanoma Res 14:57–62

    Article  PubMed  CAS  Google Scholar 

  23. Hwu WJ, Krown SE, Menell JH, et al (2003) Phase II study of temozolomide plus thalidomide for the treatment of metastatic melanoma. J Clin Oncol 21:3351–3356

    Article  PubMed  CAS  Google Scholar 

  24. Hwu W-J, Krown SE, Panageas KS, et al (2002) Temozolomide plus thalidomide in patients with advanced melanoma: results of a dose-finding trial. J Clin Oncol 20:2610–2615

    Article  PubMed  CAS  Google Scholar 

  25. Danson S, Lorigan P, Arance A, et al (2003) Randomized phase II study of temozolomide given every 8 hours or daily with either interferon alfa-2b or thalidomide in metastatic malignant melanoma. J Clin Oncol 21:2551–2557

    Article  PubMed  CAS  Google Scholar 

  26. Eisen T, Boshoff MM, Vaughan MM, et al (1998) Anti-angiogenic treatment of metastatic melanoma, renal cell, ovarian and breast cancers with thalidomide: a phase II study. Proc Am Soc Clin Oncol 17, abstract 1699a

  27. Pavlick AC, Oratz R, Bailes A, et al (2002) A phase II trial of DTIC with thalidomide in metastatic melanoma. Proc Am Soc Clin Oncol, abstract 1393

  28. Solti M, Mastrangelo MJ, Berd D, et al (2003) Phase II study of low dose thalidomide and interferon alfa 2-b (IFN) in patients with metastatic melanoma—preliminary results. Proc Am Soc Clin Oncol 22:725, abstract 2914

    Google Scholar 

  29. Fong TA, Shawver LK, Sun L, et al (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59:99–106

    PubMed  CAS  Google Scholar 

  30. Huss W, Barrios R, Greenberg N, et al (2003) SU5416 selectively impairs angiogenesis to induce prostate cancer-specific apoptosis. Mol Cancer Ther 2:611–616

    PubMed  CAS  Google Scholar 

  31. SU5416 and thalidomide phase II in patients with metastatic melanoma—investigator brochure

  32. Mendel DB, Laird AD, Smolich BD, et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41

    PubMed  CAS  Google Scholar 

  33. Mendel DB, Schreck RE, West DC, et al (2000) The angiogenesis inhibitor SU5416 has long lasting effects on VEGF receptor phosphorylation and function. Clin Cancer Res 6:4848–4858

    PubMed  CAS  Google Scholar 

  34. Stopeck A, Sheldon M, Vahedian M, et al (2002) Results of a phase I dose-escalating study of the antiangiogenic agent SU5416, in patients with advanced malignancies. Clin Cancer Res 8:2798–2805

    PubMed  CAS  Google Scholar 

  35. Peterson AC, Swinger S, Stadler WM, et al (2004) Phase II study of the FLk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin Cancer Res 10:4048–4054

    Article  PubMed  CAS  Google Scholar 

  36. Simon R (1989) Optimal two-stage design for phase II clinical trials. Control Clin Trials 10:1–10

    Article  PubMed  CAS  Google Scholar 

  37. Kuenen BC, Rosen L, Smit EF, et al (2002) Dose-finding and pharmacokinetic study of cisplatin, gemcitabine and SU5416 in patients with solid tumors. J Clin Oncol 6:1657–1667

    Article  Google Scholar 

  38. Gibaldi M, Perrier D (1982) Pharmacokinetics. Marcel Dekker, New York

    Google Scholar 

  39. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:406–416

    Article  Google Scholar 

  40. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  41. Bergers G, Benjamin LA (2003) Tumorigenesis and angiogenic switch. Nature 3:401–410

    CAS  Google Scholar 

  42. Lee J, Chow N, Want S, et al (2000) Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer 36:748–753

    Article  PubMed  CAS  Google Scholar 

  43. Takahashi Y, Kitadai Y, Bucana CD, et al (1995) Expression of vascular endothelial growth factor receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968

    PubMed  CAS  Google Scholar 

  44. Maeda K, Chung YS, Ogawa Y, et al (1996) Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77:858–863

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi Y, Cleary KR, Mai M, et al (1996) Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal type gastric cancer. Clin Cancer Res 2:1679–1684

    PubMed  CAS  Google Scholar 

  46. Fujimoto K, Hosotani R, Wada M, et al (1998) Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis. Eur J Cancer 34:1439–1447

    Article  PubMed  CAS  Google Scholar 

  47. Ikeda N, Adachi M, Taki T, et al (1999) Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79:1553–1563

    Article  PubMed  CAS  Google Scholar 

  48. Berns EM, Klijn JG, Look MP, et al (2003) Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy in estrogen receptor positive advanced breast cancer. Clin Cancer Res 9:1253–1258

    PubMed  CAS  Google Scholar 

  49. Manders P, Beex LV, Tjan-Heijnen VC, et al (2002) The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer 87:772–778

    Article  PubMed  CAS  Google Scholar 

  50. George DJ, Halabi S, Shepard TF, et al (2001) Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 7:1932–1936

    PubMed  CAS  Google Scholar 

  51. Lee M Elllis (2004) The biology of VEGF and tumor angiogenesis. Horiz Cancer Ther 5(2):4–10

    Google Scholar 

  52. Hurwitz H, Fehrenbacher L, Cartwright T, et al (2003) Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first line colorectal cancer (CRC): results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first line therapy in subjects with metastatic colorectal cancer (CRC). Proc Am Soc Clin Oncol, abstract 3646

  53. Abdollahi A, Lipson KE, Sckell A, et al (2003) Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 63(24):8890–8898

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jinee Rizzo for support of the PK assays and analysis. This work was supported by the NIH Grant UO1-CA69853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Patnaik.

Additional information

Presented in part at the 39th meeting of American Society of Clinical Oncology Chicago, IL, May 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mita, M.M., Rowinsky, E.K., Forero, L. et al. A phase II, pharmacokinetic, and biologic study of semaxanib and thalidomide in patients with metastatic melanoma. Cancer Chemother Pharmacol 59, 165–174 (2007). https://doi.org/10.1007/s00280-006-0255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0255-0

Keywords

Navigation