Skip to main content
Log in

Effects of docetaxel on antigen presentation-related functions of human monocyte-derived dendritic cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Docetaxel (TXT) is a unique chemotherapeutic agent that has been approved for treating various types of malignancies. TXT stabilizes microtubule assembly in cells and causes various dysfunctions of microtubule-dependent cellular events. Patients with advanced malignancies are beginning to receive TXT in combination with immunotherapy; however, the influence of TXT at clinically achievable serum concentrations (less than 10−6 M) on antigen presentation-related functions of human monocyte-derived dendritic cells (Mo-DCs) remains unclear.

Methods

Immature Mo-DCs (imMo-DCs) were generated from peripheral blood monocytes with interleukin-4 and granulocyte-macrophage colony-stimulating factor in vitro. Mature Mo-DCs (mMo-DCs) were induced from imMo-DCs with tumor necrosis factor-α and prostaglandin E2.

Results

TXT at concentrations lower than 10−7 M did not significantly affect cellular viability, phagocytosis, or expression of antigen presentation-related molecules of Mo-DCs. In contrast, TXT at concentrations lower than 10−9 M significantly suppressed directional motility of imMo-DCs toward MIP-1α and of mMo-DCs toward MIP-3β. However, TXT had no effect on either CCR1 expression by imMo-DCs or CCR7 expression by mMo-DCs. No gross changes in the microtubule skeleton were evident by immunofluorescence microscopy after treatment with TXT at less than 10−8 M. However, reduced numbers of imMo-DCs with podosomes localized primarily in one cell region were observed.

Conclusions

The present results indicate that different concentrations of TXT influence antigen presentation-related functions differently. In particular, TXT at relatively low therapeutic doses disrupts chemotactic motility of Mo-DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Axel DI, Kunert W, Goggelmann C, Oberhoff M, Herdeg C, Kuttner A, Wild DH, Brehm BR, Riessen R, Koveker G, Karsch KR (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96:636

    Google Scholar 

  2. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767

    Article  CAS  PubMed  Google Scholar 

  4. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451

    CAS  PubMed  Google Scholar 

  5. Belotti D, Rieppi M, Nicoletti MI, Casazza AM, Fojo T, Taraboletti G, Giavazzi R (1996) Paclitaxel (Taxol) inhibits motility of paclitaxel-resistant human ovarian carcinoma cells. Clin Cancer Res 2:175

    Google Scholar 

  6. Bruno R, Vergniol JC, Montay G (1992) Clinical pharmacology of taxotere (RP 56976) given as 1–2 hr infusion every 2–3 weeks. Proc Am Assoc Cancer Res 32:261

    Google Scholar 

  7. Burns S, Hardy SJ, Buddle J, Yong KL, Jones GE, Thrasher AJ (2004) Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil Cytoskeleton 57:118

    Article  Google Scholar 

  8. Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu-Nosjean MC, Homey B, Massacrier C, Vanbervliet B, Zlotnik A, Vicari A (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22:345

    Article  Google Scholar 

  9. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10

    Google Scholar 

  10. Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34:2203

    Google Scholar 

  11. Engleman EG, Fong L (2003) Induction of immunity to tumor-associated antigens following dendritic cell vaccination of cancer patients. Clin Immunol 106:10

    Article  CAS  PubMed  Google Scholar 

  12. Evans JG, Correia I, Krasavina O, Watson N, Matsudaira P (2003) Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J Cell Biol 161:697

    Article  Google Scholar 

  13. Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245

    Article  CAS  PubMed  Google Scholar 

  14. Gelmon K (1994) The taxoids: paclitaxel and docetaxel. Lancet 344:1267

    Article  CAS  PubMed  Google Scholar 

  15. Glasgow JE, Daniele RP (1994) Role of microtubules in random cell migration: stabilization of cell polarity. Cell Motil Cytoskeleton 27:88

    Google Scholar 

  16. Gluck S (2001) The worldwide perspective in the adjuvant treatment of primary lymph node positive breast cancer. Breast Cancer 8:321

    Google Scholar 

  17. Goodsell DS (2000) The molecular perspective: microtubules and the taxanes. Oncologist 5:345

    Article  Google Scholar 

  18. Herrin VE, Thigpen JT (1999) Chemotherapy for ovarian cancer: current concepts. Semin Surg Oncol 17:181

    Article  Google Scholar 

  19. Hortobagyi GN (1999) Recent progress in the clinical development of docetaxel (Taxotere). Semin Oncol 26(3 Suppl 9):32

    Google Scholar 

  20. Hortobagyi GN (2002) Integration of docetaxel into adjuvant breast cancer treatment regimens. Oncology (Huntingt) 16(6 Suppl 6):27

    Google Scholar 

  21. Hotchkiss KA, Ashton AW, Mahmood R, Russell RG, Sparano JA, Schwartz EL (2002) Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 1:1191

    Google Scholar 

  22. Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM (1999) The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J Immunol 162:3859

    Google Scholar 

  23. Kris MG, Tonato M (2002) New approaches in the treatment of non-small cell lung cancer: taxanes in the treatment of NSCLC: pathways to progress. Lung Cancer 38 [Suppl 4]:1

    Article  Google Scholar 

  24. Kuroki H, Morisaki T, Matsumoto K, Onishi H, Baba E, Tanaka M, Katano M (2003) Streptococcal preparation OK-432: a new maturation factor of monocyte-derived dendritic cells for clinical use. Cancer Immunol Immunother 24:4443

    Google Scholar 

  25. Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376

    Article  Google Scholar 

  26. Linder S, Hufner K, Wintergerst U, Aepfelbacher M (2000) Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J Cell Sci 113:4165

    Google Scholar 

  27. Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA, Maliszewski C, Shortman K, Cebon J, Maraskovsky E (2002) Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 100:1362

    Article  Google Scholar 

  28. Morse MA, Lyerly HK (2000) Dendritic cell-based immunization for cancer therapy. Adv Exp Med Biol 465:335

    Google Scholar 

  29. Morse MA, Zhou LJ, Tedder TF, Lyerly HK, Smith C (1997) Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy. Ann Surg 226:6

    Article  CAS  PubMed  Google Scholar 

  30. Obasaju C, Hudes GR (2001) Paclitaxel and docetaxel in prostate cancer. Hematol Oncol Clin North Am 15:525

    Google Scholar 

  31. Onishi H, Morisaki T, Baba E, Kuga H, Kuroki H, Matsumoto K, Tanaka M, Katano M (2002) Dysfunctional and short-lived subsets in monocyte-derived dendritic cells from patients with advanced cancer. Clin Immunol 105:286

    Article  Google Scholar 

  32. Roberts RL, Nath J, Friedman MM, Gallin JI (1982) Effects of taxol on human neutrophils. J Immunol 129:2134

    Google Scholar 

  33. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599

    Article  Google Scholar 

  34. Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46:200

    Google Scholar 

  35. Small JV, Geiger B, Kaverina I, Bershadsky A (2002) How do microtubules guide migrating cells? Nat Rev Mol Cell Biol 3:957

    Article  Google Scholar 

  36. Swetman CA, Leverrier Y, Garg R, Gan CH, Ridley AJ, Katz DR, Chain BM (2002) Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases. Eur J Immunol 32:2074

    Google Scholar 

  37. Terzis AJ, Thorsen F, Heese O, Visted T, Bjerkvig R, Dahl O, Arnold H, Gundersen G (1997) Proliferation, migration and invasion of human glioma cells exposed to paclitaxel (Taxol) in vitro. Br J Cancer 75:1744

    CAS  PubMed  Google Scholar 

  38. Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridges innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:251

    Google Scholar 

  39. Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D (2002) Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br J Cancer 87:21

    Article  CAS  PubMed  Google Scholar 

  40. Westerlund A, Hujanen E, Hoyhtya M, Puistola U, Turpeenniemi-Hujanen T (1997) Ovarian cancer cell invasion is inhibited by paclitaxel. Clin Exp Metastasis 15:318

    Google Scholar 

  41. Yu B, Kusmartsev S, Cheng F, Paolini M, Nefedova Y, Sotomayor E, Gabrilovich D (2003) Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res 9:285

    Google Scholar 

  42. Zhang H, Morisaki T, Nakahara C, Matsunaga H, Sato N, Nagumo F, Tadano J, Katano M (2003) PSK-mediated NF-kappaB inhibition augments docetaxel-induced apoptosis in human pancreatic cancer cells NOR-P1. Oncogene 22:2088

    Article  CAS  PubMed  Google Scholar 

  43. Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci U S A 93:2588

    Google Scholar 

  44. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Katano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, H., Tasaki, A., Kubo, M. et al. Effects of docetaxel on antigen presentation-related functions of human monocyte-derived dendritic cells. Cancer Chemother Pharmacol 55, 479–487 (2005). https://doi.org/10.1007/s00280-004-0918-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0918-7

Keywords

Navigation