Skip to main content

Advertisement

Log in

Phase I trial of continuous infusion 5-aza-2′-deoxycytidine

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To identify a dose of the demethylating agent 5-aza-2′-deoxycytidine (DAC) with acceptable side effects, and to study its effect on the methylation patterns of relevant genes in tumor biopsies before and after treatment with a novel methylation assay using real-time PCR.

Methods

A group of 19 patients with metastatic solid tumors were treated with DAC by continuous intravenous infusion over 72 h, days 1–3 of a 28-day cycle. Tumor biopsies were taken before and 7 days after starting DAC.

Results

The dose levels studied were 20, 30 and 40 mg/m2. Grade 4 neutropenia was found in two of five patients at 40 mg/m2 and one of six patients at 30 mg/m2. No objective responses were seen in this study. Steady-state DAC levels of 0.1 to 0.2 μM were achieved in the 30 and 40 mg/m2 cohorts. Changes in methylation were observed, but no single gene consistently demonstrated evidence of demethylation.

Conclusions

DAC was tolerated at a dose of 30 mg/m2 per day for a 72-h intravenous infusion. Changes in gene methylation were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Aparicio A, Weber JS (2002) Review of the clinical experience with 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumors. Curr Opin Investig Drugs 3:627–633

    CAS  PubMed  Google Scholar 

  2. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    CAS  PubMed  Google Scholar 

  3. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    PubMed  Google Scholar 

  4. Bender CM, Pao MM, Jones PA-(1998) Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58:95–101

    CAS  PubMed  Google Scholar 

  5. Bender CM, Gonzalgo ML, Gonzales FA, Nguyen CT, Robertson KD, Jones PA (1999) Roles of cell division and gene transcription in the methylation of CpG islands. Mol Cell Biol 19:6690–6698

    CAS  PubMed  Google Scholar 

  6. Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454

    PubMed  Google Scholar 

  7. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  Google Scholar 

  8. Cameron EE, Baylin SB, Herman JG (1999) P15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445–2451

    CAS  PubMed  Google Scholar 

  9. Chiurazzi P, Pomponi MG, Pietrobono R, Bakker CE, Neri G, Oostra BA (1999) Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet 8:2317–2323

    Article  CAS  PubMed  Google Scholar 

  10. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    Article  CAS  PubMed  Google Scholar 

  11. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L, Peters JH, DeMeester SR, DeMeester TR, Skinner KA, Laird PW (2001) Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 61:3410–3418

    CAS  PubMed  Google Scholar 

  12. El Osta A, Wolffe AP (2000) DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr 9:63–75

    CAS  PubMed  Google Scholar 

  13. Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Rhyu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ (1999) Hypermethylation of the HMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 59:1090–1095

    CAS  PubMed  Google Scholar 

  14. Gonzalgo ML, Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 25:2529–2531

    Article  CAS  PubMed  Google Scholar 

  15. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275:2727–2732

    PubMed  Google Scholar 

  16. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of HMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95:6870–6875

    Article  CAS  PubMed  Google Scholar 

  17. Jones PA (1999) The DNA methylation paradox. Trends Genet 15:34–37

    Google Scholar 

  18. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    Article  CAS  PubMed  Google Scholar 

  19. Jüttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91:11797–11801

    PubMed  Google Scholar 

  20. Karpf AR, Peterson PW, Rawlins JT, Dalley BK, Yang Q, Albertsen H, Jones DA (1999) Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2 and 3 genes in colon tumor cells. Proc Natl Acad Sci U S A 96:14007–14012

    Article  CAS  PubMed  Google Scholar 

  21. Koshy M, Dorn L, Bressler L, Molokie R, Lavelle D, Talischy N, Hoffman R, van Overveld W, DeSimone J (2000) 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96:2379–2384

    CAS  PubMed  Google Scholar 

  22. Kuismanen SA, Holmberg MT, Salovaara R, Schweizer P, Aaltonen LA, de la Chapelle A, Nystrom-Lahti M, Peltomaki P (1999) Epigenetic phenotypes distinguish microsatellite-stable and -unstable colorectal cancers. Proc Natl Acad Sci U S A 96:12661–12666

    Article  CAS  PubMed  Google Scholar 

  23. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19:4293

    CAS  PubMed  Google Scholar 

  24. Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC (1999) HMLH1 promoter methylation and lack of HMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 59:159–164

    PubMed  Google Scholar 

  25. Liang G, Gonzales FA, Jones PA, Orntoft TF, Thykjaer T (2002) Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res 62:961–962

    CAS  PubMed  Google Scholar 

  26. Lubbert M (2000) DNA Methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 249:135–164

    CAS  PubMed  Google Scholar 

  27. Michalowsky LA, Jones PA (1987) Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2′-deoxycytidine resistance. Mol Cell Biol 7:3076–3083

    CAS  PubMed  Google Scholar 

  28. Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214

    PubMed  Google Scholar 

  29. Momparler RL (1985) Molecular, cellular and animal pharmacology of 5-aza-2′-deoxycytidine. Pharmacol Ther 30:287–299

    Article  CAS  PubMed  Google Scholar 

  30. Momparler RL, Bouffard DY, Momparler LF, Dionne J, Belanger K, Ayoub J (1997) Pilot phase I-II study on 5-aza-2′-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anticancer Drugs 8:358–368

    CAS  PubMed  Google Scholar 

  31. Momparler RL, Bovenzi V (2000) DNA methylation and cancer. J Cell Physiol 183:145–154

    Article  CAS  PubMed  Google Scholar 

  32. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, Graff JR (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348

    CAS  PubMed  Google Scholar 

  33. Newell-Price J, Clark AJ, King P (2000) DNA methylation and silencing of gene expression. Trends Endocrinol Metab 11:142–148

    Article  CAS  PubMed  Google Scholar 

  34. Olek A, Oswald J, Walter JA (1996) Modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 24:5064–5066

    CAS  PubMed  Google Scholar 

  35. Razin A (1998) CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J 17:4905–4908

    PubMed  Google Scholar 

  36. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404:1003–1007

    Article  CAS  PubMed  Google Scholar 

  37. Richel DJ, Colly LP, Kluin-Nelemans JC, Willemze R (1991) The antileukaemic activity of 5-aza-2 deoxycytidine (Aza-DC) in patients with relapsed and resistant leukaemia. Br J Cancer 64:144–1448

    CAS  PubMed  Google Scholar 

  38. Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21:461–467

    Article  CAS  PubMed  Google Scholar 

  39. Salvesen HB, MacDonald N, Ryan A, Iversen OE, Jacobs IJ, Akslen LA, Das S (2000) Methylation of HMLH1 in a population-based series of endometrial carcinomas. Clin Cancer Res 6:3607–3613

    CAS  PubMed  Google Scholar 

  40. Santini V, Kantarjian HM, Issa JP (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 134:573–586

    CAS  PubMed  Google Scholar 

  41. Schubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, Groudine M (2000) Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol 20:9103–9112

    PubMed  Google Scholar 

  42. Skibber JM, Minsky BD, Hoff PM (2001) Cancer of the colon. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer. Principles and practice of oncology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1216–1271

  43. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409):207–211

    Google Scholar 

  44. Veigl ML, Kasturi L, Olechnowicz J, Ma A, Luttterbaugh JD, Periyasamy S, Li G, Drummond J, Modrich PL, Sedwick WD, Markowitz S (1998) Biallelic inactivation of HMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A 95:8698–8702

    Article  CAS  PubMed  Google Scholar 

  45. Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, Treisman J, Rosenberg SA (1994) Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54:1766–1771

    CAS  PubMed  Google Scholar 

  46. Wu Y, Nystrom-Lahti M, Osinga J, Looman MW, Peltomaki P, Aaltonen LA, de la Chapelle A, Hofstra RM, Buys CH (1997) MSH2 and MLH1 mutations and sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer 18:269–278

    Article  CAS  PubMed  Google Scholar 

  47. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S (1995) Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A 92:7416–7419

    CAS  PubMed  Google Scholar 

  48. Zhao M, Newman EM, Doroshow JH, Weber JS, Hartke C, Baker SD (2002) Sensitive and specific method for the determination of 5-aza-2′-deoxycytidine in human plasma by LC-MS-MS (abstract 1067). Proc Am Assoc Cancer Res 43

Download references

Acknowledgements

The authors wish to acknowledge the advice and wisdom of Dr. James Doroshow of City of Hope Medical Center for help with the design and execution of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Weber.

Additional information

This work was supported by grant UO-1 CA 62505 from the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, A., Eads, C.A., Leong, L.A. et al. Phase I trial of continuous infusion 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol 51, 231–239 (2003). https://doi.org/10.1007/s00280-002-0563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-002-0563-y

Keywords

Navigation