Skip to main content

Advertisement

Log in

Abnormalities of the bone marrow immune microenvironment in patients with immune thrombocytopenia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Immune thrombocytopenia (ITP) is an acquired autoimmune disease. Although antiplatelet antibodies are considered as the primary immunologic defect in these patients, dysfunctional cellular immunity is also important in the pathophysiology of ITP. Peripheral T cell abnormalities have been demonstrated in patients with ITP; however, whether the impaired bone marrow (BM) microenvironment, specifically the BM immune microenvironment, is involved in the pathogenesis of ITP remains unknown. In this study, the compartments of the BM immune microenvironment and BM vascular microenvironment were analyzed in 26 untreated patients with ITP and 26 healthy donors (HD). Subsets of T cells in the BM immune microenvironment, including Th1, Th2, Tc1, Tc2, Th17, and Treg cells, were analyzed via flow cytometry. BM endothelial cells and perivascular cells, which are key elements of the vascular microenvironment, were analyzed via flow cytometry as well as hematoxylin-eosin (H&E) and immunohistochemical (IHC) staining in situ. Elements of the BM vascular microenvironment were found to be normal in patients with ITP, but abnormal characteristics of the BM immune microenvironment, including excessive polarization in Th1, Tc1, and Th17 cells and a remarkable decrease in Treg cells, were observed in patients with ITP. Therefore, a deregulated T cell response in the BM microenvironment might play an important role in the pathogenesis of ITP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McMillan R (1981) Chronic idiopathic thrombocytopenic purpura. N Engl J Med 304(19):1135–1147. doi:10.1056/NEJM198105073041904

    Article  CAS  PubMed  Google Scholar 

  2. Stasi R, Evangelista ML, Stipa E, Buccisano F, Venditti A, Amadori S (2008) Idiopathic thrombocytopenic purpura: current concepts in pathophysiology and management. Thromb Haemost 99(1):4–13. doi:10.1160/TH07-08-0513

    CAS  PubMed  Google Scholar 

  3. Ji X, Zhang L, Peng J, Hou M (2014) T cell immune abnormalities in immune thrombocytopenia. J Hematol Oncol 7(1):72. doi:10.1186/s13045-014-0072-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang L, Li Y, Hou M (2007) Idiopathic thrombocytopenic purpura and dysmegakaryocytopoiesis. Crit Rev Oncol Hematol 64(2):83–89. doi:10.1016/j.critrevonc.2007.05.007

    Article  PubMed  Google Scholar 

  5. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125(17):2621–2629. doi:10.1182/blood-2014-09-570192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1):64–71. doi:10.1038/nm973

    Article  CAS  PubMed  Google Scholar 

  7. Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA, Asch AS (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86(9):3353–3363

    CAS  PubMed  Google Scholar 

  8. Olsson B, Andersson PO, Jacobsson S, Carlsson L, Wadenvik H (2005) Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purpura. Thromb Haemost 93(1):139–144. doi:10.1267/THRO05010139

    CAS  PubMed  Google Scholar 

  9. Zhang XL, Peng J, Sun JZ, Guo CS, Yu Y, Wang ZG, Chu XX, Hou M (2008) Modulation of immune response with cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin-induced anergic T cells in chronic idiopathic thrombocytopenic purpura. J Thromb Haemostasis JTH 6(1):158–165. doi:10.1111/j.1538-7836.2007.02804.x

    Article  CAS  Google Scholar 

  10. Zhang XL, Peng J, Sun JZ, Liu JJ, Guo CS, Wang ZG, Yu Y, Shi Y, Qin P, Li SG, Zhang LN, Hou M (2009) De novo induction of platelet-specific CD4(+)CD25(+) regulatory T cells from CD4(+)CD25(-) cells in patients with idiopathic thrombocytopenic purpura. Blood 113(11):2568–2577. doi:10.1182/blood-2008-03-148288

    Article  CAS  PubMed  Google Scholar 

  11. Aslam R, Hu Y, Gebremeskel S, Segel GB, Speck ER, Guo L, Kim M, Ni H, Freedman J, Semple JW (2012) Thymic retention of CD4+CD25+FoxP3+ T regulatory cells is associated with their peripheral deficiency and thrombocytopenia in a murine model of immune thrombocytopenia. Blood 120(10):2127–2132. doi:10.1182/blood-2012-02-413526

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, Han ZC (2005) Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica 90(7):914–923

    CAS  PubMed  Google Scholar 

  13. Li S, Wang L, Zhao C, Li L, Peng J, Hou M (2007) CD8+ T cells suppress autologous megakaryocyte apoptosis in idiopathic thrombocytopenic purpura. Br J Haematol 139(4):605–611. doi:10.1111/j.1365-2141.2007.06737.x

    Article  PubMed  Google Scholar 

  14. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH, Cooper N, Godeau B, Lechner K, Mazzucconi MG, McMillan R, Sanz MA, Imbach P, Blanchette V, Kuhne T, Ruggeri M, George JN (2009) Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 113(11):2386–2393. doi:10.1182/blood-2008-07-162503

    Article  CAS  PubMed  Google Scholar 

  15. Kong Y, Chang YJ, Wang YZ, Chen YH, Han W, Wang Y, Sun YQ, Yan CH, Wang FR, Liu YR, Xu LP, Liu DH, Huang XJ (2013) Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 19(10):1465–1473. doi:10.1016/j.bbmt.2013.07.014

    Article  Google Scholar 

  16. Kong Y, Hu Y, Zhang XH, Wang YZ, Mo XD, Zhang YY, Wang Y, Han W, Xu LP, Chang YJ, Huang XJ (2014) Association between an impaired bone marrow vascular microenvironment and prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 20(8):1190–1197. doi:10.1016/j.bbmt.2014.04.015

    Article  Google Scholar 

  17. Olsson B, Ridell B, Carlsson L, Jacobsson S, Wadenvik H (2008) Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood 112(4):1078–1084. doi:10.1182/blood-2008-02-139402

    Article  CAS  PubMed  Google Scholar 

  18. Bateman EA, Ayers L, Sadler R, Lucas M, Roberts C, Woods A, Packwood K, Burden J, Harrison D, Kaenzig N, Lee M, Chapel HM, Ferry BL (2012) T cell phenotypes in patients with common variable immunodeficiency disorders: associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin Exp Immunol 170(2):202–211. doi:10.1111/j.1365-2249.2012.04643.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Ma D, Zhu X, Qu X, Ji C, Hou M (2009) Elevated profile of Th17, Th1 and Tc1 cells in patients with immune thrombocytopenic purpura. Haematologica 94(9):1326–1329. doi:10.3324/haematol.2009.007823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu F, Wu C, Yang X, Xiao H, Zhuo X, Cheng Z, Chen Q (2005) Polarization and apoptosis of T cell subsets in idiopathic thrombocytopenic purpura. Cell Mol Immunol 2(5):387–392

    CAS  PubMed  Google Scholar 

  21. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev J Clin Ther 8(3):223–246

    Google Scholar 

  22. Teke HU, Gunduz E, Akay OM, Gulbas Z (2013) Abnormality of regulatory T-cells in remission and non-remission idiopathic thrombocytopaenic purpura patients. Platelets 24(8):625–631. doi:10.3109/09537104.2012.748188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Kong.

Ethics declarations

Compliance with ethical standards, all procedures were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 81570127&81370638&81530046&81230013), Milstein Medical Asian American Partnership (MMAAP) Foundation, the Beijing Municipal Science and Technology Program (grant nos.Z151100004015164&Z151100001615020& Z141100000214011), and the Science and Technology Project of Guangdong Province of China.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Wang, YT., Huang, XJ. et al. Abnormalities of the bone marrow immune microenvironment in patients with immune thrombocytopenia. Ann Hematol 95, 959–965 (2016). https://doi.org/10.1007/s00277-016-2641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2641-y

Keywords

Navigation