Skip to main content
Log in

Increasing numbers of CD19 + CD24highCD38high regulatory B cells and pre-germinal center B cells reflect activated autoimmunity and predict future treatment response in patients with untreated immune thrombocytopenia

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The pathophysiology of immune thrombocytopenia (ITP) is poorly understood, particularly aspects regarding abnormal homeostasis and dysregulation of B cells. In this study, we analyzed peripheral lymphocyte subsets in patients with untreated ITP and healthy controls, and examined correlations between cell percentages/counts and titers of serum cytokines and antibodies. We also compared ITP patients who later required second-line therapies and those who did not. The percentages of CD19 + CD24highCD38high regulatory B cells, pre-germinal center (GC) B cells, and plasmablast-like B cells were significantly higher in ITP patients than in healthy controls. Absolute counts of regulatory B cells and pre-GC B cells were significantly higher in those who needed second-line therapies. In addition, serum B cell-activating factor belonging to the tumor necrosis factor family (BAFF) levels and platelet-associated immune globulin G antibody titers correlated positively with regulatory B cell, pre-GC B cell, and auto-reactive B cell counts. Serum interferon-α (IFN-α) levels were elevated in four ITP patients with high auto-reactive B cell counts. These results indicate that increases in regulatory B cells and pre-GC B cells may reflect activated autoimmunity induced by BAFF and/or IFN-α. Consequently, evaluation of B cell subsets in untreated ITP patients may predict treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zufferey A, Kapur R, Semple JW. Pathogenesis and therapeutic mechanisms in immune thrombocytopenia ITP. J Clin Med. 2017. https://doi.org/10.3390/jcm6020016.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Semple JW, Rebetz J, Maouia A, Kapur R. An update on the pathophysiology of immune thrombocytopenia. Curr Opin Hematol. 2020;27(6):423–9.

    Article  CAS  Google Scholar 

  3. Miltiadous O, Hou M, Bussel JB. Identifying and treating refractory ITP: difficulty in diagnosis and role of combination treatment. Blood. 2020;135(7):472–90.

    Article  Google Scholar 

  4. Kuwana M, Ikeda Y. The role of autoreactive T-cells in the pathogenesis of idiopathic thrombocytopenic purpura. Int J Hematol. 2005;81(2):106–12.

    Article  CAS  Google Scholar 

  5. Emmerich F, Bal G, Barakat A, Milz J, Mühle C, Martinez-Gamboa L, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura. Br J Haematol. 2007;136(2):309–14.

    Article  CAS  Google Scholar 

  6. Zhu XJ, Shi Y, Sun JZ, Shan NN, Peng J, Guo CS, et al. High-dose dexamethasone inhibits BAFF expression in patients with immune thrombocytopenia. J Clin Immunol. 2009;29(5):603–10.

    Article  Google Scholar 

  7. Audia S, Rossato M, Santegoets K, Spijkers S, Wichers C, Bekker C, et al. Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood. 2014;124(18):2858–66.

    Article  CAS  Google Scholar 

  8. Flint SM, Gibson A, Lucas G, Nandigam R, Taylor L, Provan D, et al. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia. Haematologica. 2016;101(6):698–706.

    Article  CAS  Google Scholar 

  9. Isnardi I, Ng YS, Menard L, Meyers G, Saadoun D, Srdanovic I, et al. Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones. Blood. 2010;115(24):5026–36.

    Article  CAS  Google Scholar 

  10. Mahmood Z, Muhammad K, Schmalzing M, Roll P, Dörner T, Tony HP. CD27-IgD- memory B cells are modulated by in vivo interleukin-6 receptor (IL-6R) blockade in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):61.

    Article  Google Scholar 

  11. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol. 2007;178(10):6624–33.

    Article  CAS  Google Scholar 

  12. Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10(6):365–73.

    Article  CAS  Google Scholar 

  13. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.

    Article  CAS  Google Scholar 

  14. Arce E, Jackson DG, Gill MA, Bennett LB, Banchereau J, Pascual V. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J Immunol. 2001;167(4):2361–9.

    Article  CAS  Google Scholar 

  15. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol. 2000;165(10):5970–9.

    Article  CAS  Google Scholar 

  16. Owczarczyk K, Lal P, Abbas AR, Wolslegel K, Holweg CT, Dummer W, et al. A plasmablast biomarker for nonresponse to antibody therapy to CD20 in rheumatoid arthritis. Sci Transl Med. 2011;3(101):101ra92.

    Article  Google Scholar 

  17. Kerkman PF, Rombouts Y, van der Voort EI, Trouw LA, Huizinga TW, Toes RE, et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann Rheum Dis. 2013;72(7):1259–63.

    Article  CAS  Google Scholar 

  18. Stathopoulos P, Kumar A, Nowak RJ, O’Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight. 2017. https://doi.org/10.1172/jci.insight.94263.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wallace ZS, Mattoo H, Carruthers M, Mahajan VS, Della Torre E, Lee H, et al. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann Rheum Dis. 2015;74(1):190–5.

    Article  CAS  Google Scholar 

  20. Simon Q, Pers JO, Cornec D, Le Pottier L, Mageed RA, Hillion S. In-depth characterization of CD24(high)CD38(high) transitional human B cells reveals different regulatory profiles. J Allergy Clin Immunol. 2016;137(5):1577-84.e10.

    Article  CAS  Google Scholar 

  21. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity. 2010;32(1):129–40.

    Article  CAS  Google Scholar 

  22. Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med. 2013;5(173):173.

    Article  Google Scholar 

  23. Zhu HQ, Xu RC, Chen YY, Yuan HJ, Cao H, Zhao XQ, et al. Impaired function of CD19(+) CD24(hi) CD38(hi) regulatory B cells in patients with pemphigus. Br J Dermatol. 2015;172(1):101–10.

    Article  CAS  Google Scholar 

  24. Li X, Zhong H, Bao W, Boulad N, Evangelista J, Haider MA, et al. Defective regulatory B-cell compartment in patients with immune thrombocytopenia. Blood. 2012;120(16):3318–25.

    Article  CAS  Google Scholar 

  25. Rowland SL, Leahy KF, Halverson R, Torres RM, Pelanda R. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol. 2010;185(8):4570–81.

    Article  CAS  Google Scholar 

  26. Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, et al. CD19(+)CD24(hi)CD38(hi) B cells are expanded in juvenile dermatomyositis and exhibit a pro-inflammatory phenotype after activation through toll-like receptor 7 and interferon-α. Front Immunol. 2018;9:1372.

    Article  Google Scholar 

  27. Liu M, Guo Q, Wu C, Sterlin D, Goswami S, Zhang Y, et al. Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients. Cell Mol Immunol. 2019;16(4):367–79.

    Article  CAS  Google Scholar 

  28. Dieudonné Y, Gies V, Guffroy A, Keime C, Bird AK, Liesveld J, et al. Transitional B cells in quiescent SLE: an early checkpoint imprinted by IFN. J Autoimmun. 2019;102:150–8.

    Article  Google Scholar 

  29. Sehgal K, Guo X, Koduru S, Shah A, Lin A, Yan X, et al. Plasmacytoid dendritic cells, interferon signaling, and FcγR contribute to pathogenesis and therapeutic response in childhood immune thrombocytopenia. Sci Transl Med. 2013;5(193):193.

    Article  Google Scholar 

  30. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30.

    Article  CAS  Google Scholar 

  31. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31.

    Article  CAS  Google Scholar 

  32. Wang Q, Miyakawa Y, Fox N, Kaushansky K. Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood. 2000;96(6):2093–9.

    Article  CAS  Google Scholar 

  33. Yamane A, Nakamura T, Suzuki H, Ito M, Ohnishi Y, Ikeda Y, et al. Interferon-alpha 2b-induced thrombocytopenia is caused by inhibition of platelet production but not proliferation and endomitosis in human megakaryocytes. Blood. 2008;112(3):542–50.

    Article  CAS  Google Scholar 

  34. Kuwana M. Helicobacter pylori-associated immune thrombocytopenia: clinical features and pathogenic mechanisms. World J Gastroenterol. 2014;20(3):714–23.

    Article  Google Scholar 

  35. Cines DB, Liebman H, Stasi R. Pathobiology of secondary immune thrombocytopenia. Semin Hematol. 2009;46(1 Suppl 2):S2-14.

    Article  Google Scholar 

  36. Stasi R, Rossi Z, Stipa E, Amadori S, Newland AC, Provan D. Helicobacter pylori eradication in the management of patients with idiopathic thrombocytopenic purpura. Am J Med. 2005;118(4):414–9.

    Article  Google Scholar 

  37. Choi YS, Baumgarth N. Dual role for B-1a cells in immunity to influenza virus infection. J Exp Med. 2008;205(13):3053–64.

    Article  CAS  Google Scholar 

  38. Rodriguez-Zhurbenko N, Quach TD, Hopkins TJ, Rothstein TL, Hernandez AM. Human B-1 Cells and B-1 cell antibodies change with advancing age. Front Immunol. 2019;10:483.

    Article  CAS  Google Scholar 

  39. Gudbrandsdottir S, Brimnes M, Køllgaard T, Hasselbalch HC, Nielsen CH. Effects of rituximab and dexamethasone on regulatory and proinflammatory B-cell subsets in patients with primary immune thrombocytopenia. Eur J Haematol. 2018;100(1):45–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Kikuchi for patient enrollment, N. Osaki for technical assistance, and S. Ishikawa for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohisa Nakamae.

Ethics declarations

Conflicts of interest

Dr. Hayashi reports honoraria from MSD K.K. and Kyowa Kirin Co., Ltd. (none of which are related to the submitted work). Dr. Hirohisa Nakamae reports grants from Novartis Pharma K.K., honoraria from Takeda Pharmaceutical Co., Ltd., Pfizer Japan Inc., Novartis Pharma K.K., Celgene Corporation, Kyowa Kirin Co., Ltd., and Nippon Shinyaku Co., Ltd.; and an advisory board fee from Chugai Pharmaceutical Co., Ltd., Novartis Pharma K.K., and Pfizer Japan Inc. (none of which are related to the submitted work). Dr. Nakashima reports grants from Eisai Co., Ltd., Celgene Corporation, and Novartis Pharma K.K., honoraria from Eisai Co., Ltd., Pfizer Japan Inc., Novartis Pharma K.K., and Kyowa Kirin Co., Ltd., and an advisory fee from Novartis Pharma K.K. (none of which are related to the submitted work). Dr. Koh reports grants from Chugai Pharmaceutical Co., Ltd., Asahi Kasei Pharma Corporation, and Takeda Pharmaceutical Co., Ltd., honoraria from MSD K.K., Takeda Pharmaceutical Co., Ltd., and Sumitomo Dainippon Pharma Co., Ltd., an advisory board fee from Takeda Pharmaceutical Co., Ltd., and a consulting fee from MSD K.K. (none of which are related to the submitted work). Dr. Nishimoto reports honoraria from Kyowa Kirin Co., Ltd. (none of which are related to the submitted work). Dr. Okamura reports honoraria from Eisai Co., Ltd. and Nippon Shinyaku Co., Ltd. (none of which are related to the submitted work). Dr. Nanno reports honoraria from Eisai Co., Ltd. (none of which are related to the submitted work). Dr. Mika Nakamae reports honoraria from Novartis Pharma K.K. (none of which are related to the submitted work). Dr. Hino reports grants from Pfizer Japan Inc., MSD K.K., and Novartis Pharma K.K., honoraria from MSD K.K., Eisai Co., Ltd., Kyowa Kirin Co., Ltd., Celgene Corporation, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Co., Ltd., Chugai Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd., Novartis Pharma K.K., and Pfizer Japan Inc., an advisory board fee from Pfizer Japan Inc., and a consulting fee from Kyowa Kirin Co., Ltd. (none of which are related to the submitted work). All the authors (our institution) report grants from MSD K.K., Eisai Co., Ltd., Kyowa Kirin Co., Ltd., Takeda Pharmaceutical Co., Ltd., Chugai Pharmaceutical Co., Ltd., Teijin Pharma, Ltd., Pfizer Japan Inc., and Sumitomo Dainippon Pharma Co., Ltd. (none of which are related to the submitted work).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1002 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, T., Nakamae, H., Takeda, S. et al. Increasing numbers of CD19 + CD24highCD38high regulatory B cells and pre-germinal center B cells reflect activated autoimmunity and predict future treatment response in patients with untreated immune thrombocytopenia. Int J Hematol 114, 580–590 (2021). https://doi.org/10.1007/s12185-021-03192-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03192-w

Keywords

Navigation