Skip to main content

Advertisement

Log in

Isolation and characterization of mouse bone marrow-derived Lin/VEGF-R2+ progenitor cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Circulating endothelial progenitor cells (EPCs) in the peripheral blood (PB) have physiological roles in the maintenance of the existing vascular beds and rescue of vascular injury. In this study, we have evaluated the properties of Lin/VEGF-R2+ progenitor cells isolated from the mouse bone marrow (BM) and further studied their distribution and integration in an animal model of laser-induced retinal vascular injury. Lin/VEGF-R2+ cells were enriched from C57BL/6 mice BM using magnetic cell sorting with hematopoietic lineage (Lin) depletion followed by VEGF-R2 positive selection. Lin/VEGF-R2+ BM cells were characterized using flow cytometry and immunocytochemistry and further tested for colony formation during culture and tube formation on Matrigel®. Lin/VEGF-R2+ BM cells possessed typical EPC properties such as forming cobble-stone shaped colonies after 3 to 4 weeks of culture, CD34+ expression, take up of Dil-acLDL and binding to Ulex europaeus agglutinin. However, they did not form tube-like structures on Matrigel®. The progenitor cells retained their phenotype over extended period of culture. After intravitreal transplantation in eyes subjected to the laser-induced retinal vascular injury, some Lin/VEGF-R2+ cells were able to integrate into the damaged retinal vasculature but the level of cell integration seemed less efficient when compared with previous reports in which EPCs from the human PB were employed. Our results indicate that Lin/VEGF-R2+ cells isolated from the mouse BM share some similarities to EPCs from the human PB but most of them are at a very early stage of maturation and remain quiescent during culture and after intravitreal transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  2. Liew A, McDermott JH, Barry F, O'Brien T (2008) Endothelial progenitor cells for the treatment of diabetic vasculopathy: panacea or Pandora's box? Diabetes Obes Metab 10(5):353–366. doi:10.1111/j.1463-1326.2007.00754.x

    Article  PubMed  CAS  Google Scholar 

  3. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8(6):607–612

    Article  PubMed  CAS  Google Scholar 

  4. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840

    PubMed  CAS  Google Scholar 

  5. Isner JM, Kalka C, Kawamoto A, Asahara T (2001) Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann N Y Acad Sci 953:75–84

    Article  PubMed  CAS  Google Scholar 

  6. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2(11):826–835

    Article  PubMed  CAS  Google Scholar 

  7. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S, Manova K, Mittal V, Benezra R (2003) Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4(4):277–289

    Article  PubMed  CAS  Google Scholar 

  8. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  9. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111(22):2981–2987. doi:10.1161/CIRCULATIONAHA.104.504340

    Article  PubMed  Google Scholar 

  10. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007

    Article  PubMed  CAS  Google Scholar 

  11. Sekiguchi H, Ii M, Losordo DW (2009) The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. J Cell Physiol 219(2):235–242. doi:10.1002/jcp.21672

    Article  PubMed  CAS  Google Scholar 

  12. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  PubMed  CAS  Google Scholar 

  13. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435

    Article  PubMed  Google Scholar 

  14. Jung KH, Roh JK (2008) Circulating endothelial progenitor cells in cerebrovascular disease. J Clin Neurol 4(4):139–147. doi:10.3988/jcn.2008.4.4.139

    Article  PubMed  Google Scholar 

  15. Couffinhal T, Silver M, Kearney M, Sullivan A, Witzenbichler B, Magner M, Annex B, Peters K, Isner JM (1999) Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE−/− mice. Circulation 99(24):3188–3198

    Article  PubMed  CAS  Google Scholar 

  16. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56(4):960–967. doi:10.2337/db06-1254

    Article  PubMed  CAS  Google Scholar 

  17. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760. doi:10.1182/blood-2004-04-13962004-04-1396

    Article  PubMed  CAS  Google Scholar 

  18. Walenta K, Friedrich EB, Sehnert F, Werner N, Nickenig G (2005) In vitro differentiation characteristics of cultured human mononuclear cells-implications for endothelial progenitor cell biology. Biochem Biophys Res Commun 333(2):476–482. doi:10.1016/j.bbrc.2005.05.153

    Article  PubMed  CAS  Google Scholar 

  19. Bellik L, Ledda F, Parenti A (2005) Morphological and phenotypical characterization of human endothelial progenitor cells in an early stage of differentiation. FEBS Lett 579(12):2731–2736. doi:10.1016/j.febslet.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  20. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105(11):1527–1536

    Article  PubMed  CAS  Google Scholar 

  21. Ishikawa M, Asahara T (2004) Endothelial progenitor cell culture for vascular regeneration. Stem Cells Dev 13(4):344–349. doi:10.1089/1547328041797435

    Article  PubMed  Google Scholar 

  22. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34−/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98(3):e20–e25. doi:10.1161/01.RES.0000205765.28940.93

    Article  PubMed  CAS  Google Scholar 

  23. Medina R, O'Neill CL, Humphreys MW, Gardiner TA, Stitt AW (2010) Outgrowth endothelial cells: characterisation and their potential for reversing ischaemic retinopathy. Invest Ophthalmol Vis Sci 51(11):5906–5913. doi:10.1167/iovs.09-4951

    Article  PubMed  Google Scholar 

  24. Critser PJ, Voytik-Harbin SL, Yoder MC (2011) Isolating and defining cells to engineer human blood vessels. Cell Prolif 44(Suppl 1):15–21. doi:10.1111/j.1365-2184.2010.00719.x

    Article  PubMed  Google Scholar 

  25. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8(9):1004–1010

    Article  PubMed  CAS  Google Scholar 

  26. Barber CL, Iruela-Arispe ML (2006) The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatr Res 59(4 Pt 2):26R–32R. doi:10.1203/01.pdr.0000203553.46471.18

    Article  PubMed  Google Scholar 

  27. Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28(9):1584–1595. doi:10.1161/ATVBAHA.107.155960

    Article  PubMed  CAS  Google Scholar 

  28. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9(11):1370–1376

    Article  PubMed  CAS  Google Scholar 

  29. Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL, Mames RN, Segal MS, Grant MB, Scott EW (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115(1):86–93

    PubMed  CAS  Google Scholar 

  30. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114(6):765–774

    PubMed  CAS  Google Scholar 

  31. Wang QR, Wang BH, Huang YH, Dai G, Li WM, Yan Q (2008) Purification and growth of endothelial progenitor cells from murine bone marrow mononuclear cells. J Cell Biochem 103(1):21–29. doi:10.1002/jcb.21377

    Article  PubMed  CAS  Google Scholar 

  32. Shapiro HM (1988) Practical flow cytometry, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  33. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, Tsikas D, Ertl G, Bauersachs J (2007) Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes 56(3):666–674. doi:10.2337/db06-0699

    Article  PubMed  CAS  Google Scholar 

  34. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97(7):3422–3427

    Article  PubMed  CAS  Google Scholar 

  35. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 108(3):399–405

    PubMed  CAS  Google Scholar 

  36. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3):952–958

    PubMed  CAS  Google Scholar 

  37. Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, Derr-Yellin E, DiMeglio LA, Haneline LS (2008) In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes 57(3):724–731. doi:10.2337/db07-1507

    Article  PubMed  CAS  Google Scholar 

  38. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13(5):201–206

    Article  PubMed  CAS  Google Scholar 

  39. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77

    Article  PubMed  CAS  Google Scholar 

  40. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3):337–346. doi:10.1172/JCI14327

    PubMed  CAS  Google Scholar 

  41. Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103(3):921–926. doi:10.1182/blood-2003-04-12842003-04-1284

    Article  PubMed  CAS  Google Scholar 

  42. Balestrieri ML, Rienzo M, Felice F, Rossiello R, Grimaldi V, Milone L, Casamassimi A, Servillo L, Farzati B, Giovane A, Napoli C (2008) High glucose downregulates endothelial progenitor cell number via SIRT1. Biochim Biophys Acta 1784(6):936–945. doi:10.1016/j.bbapap.2008.03.004

    Article  PubMed  CAS  Google Scholar 

  43. Balestrieri ML, Schiano C, Felice F, Casamassimi A, Balestrieri A, Milone L, Servillo L, Napoli C (2008) Effect of low doses of red wine and pure resveratrol on circulating endothelial progenitor cells. J Biochem 143(2):179–186. doi:10.1093/jb/mvm209

    Article  PubMed  CAS  Google Scholar 

  44. Biancone L, Cantaluppi V, Duo D, Deregibus MC, Torre C, Camussi G (2004) Role of L-selectin in the vascular homing of peripheral blood-derived endothelial progenitor cells. J Immunol 173(8):5268–5274

    PubMed  CAS  Google Scholar 

  45. Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R, El Makhfi N, Urbich C, Peters T, Scharffetter-Kochanek K, Zeiher AM, Chavakis T, Dimmeler S (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201(1):63–72

    Article  PubMed  CAS  Google Scholar 

  46. Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, Zeiher AM, Chavakis T, Dimmeler S (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100(2):204–212

    Article  PubMed  CAS  Google Scholar 

  47. Chen J, Wang X, Zhu J, Shang Y, Guo X, Sun J (2004) Effects of ginkgo biloba extract on number and activity of endothelial progenitor cells from peripheral blood. J Cardiovasc Pharmacol 43(3):347–352

    Article  PubMed  CAS  Google Scholar 

  48. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH (2004) Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond) 107(3):273–280. doi:10.1042/CS20030389CS20030389

    Article  CAS  Google Scholar 

  49. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56(6):1559–1568. doi:10.2337/db06-1103

    Article  PubMed  CAS  Google Scholar 

  50. Choi JH, Hur J, Yoon CH, Kim JH, Lee CS, Youn SW, Oh IY, Skurk C, Murohara T, Park YB, Walsh K, Kim HS (2004) Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem 279(47):49430–49438. doi:10.1074/jbc.M402088200

    Article  PubMed  CAS  Google Scholar 

  51. Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S (2004) Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 104(12):3591–3597. doi:10.1182/blood-2003-12-4103

    Article  PubMed  CAS  Google Scholar 

  52. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108(3):391–397

    PubMed  CAS  Google Scholar 

  53. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102(4):1340–1346. doi:10.1182/blood-2003-01-0223

    Article  PubMed  CAS  Google Scholar 

  54. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T (2000) Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86(12):1198–1202

    Article  PubMed  CAS  Google Scholar 

  55. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, Symes JF (2000) VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 70(3):829–834

    Article  PubMed  CAS  Google Scholar 

  56. Leshem-Lev D, Omelchenko A, Perl L, Kornowski R, Battler A, Lev EI (2010) Exposure to platelets promotes functional properties of endothelial progenitor cells. J Thromb Thrombolysis. doi:10.1007/s11239-010-0514-0

    PubMed  Google Scholar 

  57. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786

    Article  PubMed  Google Scholar 

  58. Yodoi Y, Sasahara M, Kameda T, Yoshimura N, Otani A (2007) Circulating hematopoietic stem cells in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 48(12):5464–5472. doi:10.1167/iovs.07-0093

    Article  PubMed  Google Scholar 

  59. Gensch C, Clever YP, Werner C, Hanhoun M, Bohm M, Laufs U (2007) The PPAR-gamma agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis 192(1):67–74. doi:10.1016/j.atherosclerosis.2006.06.026

    Article  PubMed  CAS  Google Scholar 

  60. Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, Aikawa R, Isner JM, Asahara T, Losordo DW (2003) Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108(25):3115–3121

    Article  PubMed  CAS  Google Scholar 

  61. Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116(12):3266–3276

    Article  PubMed  CAS  Google Scholar 

  62. Yoon CH, Hur J, Oh IY, Park KW, Kim TY, Shin JH, Kim JH, Lee CS, Chung JK, Park YB, Kim HS (2006) Intercellular adhesion molecule-1 is upregulated in ischemic muscle, which mediates trafficking of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 26(5):1066–1072

    Article  PubMed  CAS  Google Scholar 

  63. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12):5002–5012

    PubMed  CAS  Google Scholar 

  64. Wang XR, Zhang MW, Chen DD, Zhang Y, Chen AF (2011) AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. Am J Physiol Endocrinol Metab 300(6):E1135–E1145. doi:10.1152/ajpendo.00001.2011

    Article  PubMed  CAS  Google Scholar 

  65. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456(7223):804–808. doi:10.1038/nature07427

    Article  PubMed  CAS  Google Scholar 

  66. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279(12):11384–11391. doi:10.1074/jbc.M310822200

    Article  PubMed  CAS  Google Scholar 

  67. Xiao Q, Zeng L, Zhang Z, Hu Y, Xu Q (2007) Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin alpha1/beta1/alphav and PDGF receptor pathways. American journal of physiology Cell physiology 292(1):C342–C352. doi:10.1152/ajpcell.00341.2006

    Article  PubMed  CAS  Google Scholar 

  68. Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC (2005) Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells 23(4):575–583. doi:10.1634/stemcells.2004-0185

    Article  PubMed  CAS  Google Scholar 

  69. Thum T, Fraccarollo D, Galuppo P, Tsikas D, Frantz S, Ertl G, Bauersachs J (2006) Bone marrow molecular alterations after myocardial infarction: impact on endothelial progenitor cells. Cardiovasc Res 70(1):50–60. doi:10.1016/j.cardiores.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  70. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809

    Article  PubMed  CAS  Google Scholar 

  71. Liew A, Barry F, O'Brien T (2006) Endothelial progenitor cells: diagnostic and therapeutic considerations. Bioessays 28(3):261–270. doi:10.1002/bies.20372

    Article  PubMed  Google Scholar 

  72. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112

    PubMed  CAS  Google Scholar 

  73. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93(11):1023–1025

    Article  PubMed  CAS  Google Scholar 

  74. Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z (2003) Transdifferentiation of human peripheral blood CD34+ −enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108(17):2070–2073

    Article  PubMed  Google Scholar 

  75. Wang QR, Yan Y, Wang BH, Li WM, Wolf NS (1998) Long-term culture of murine bone-marrow-derived endothelial cells. Vitro Cell Dev Biol Anim 34(6):443–446

    Article  CAS  Google Scholar 

  76. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8(8):841–849

    PubMed  CAS  Google Scholar 

  77. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  PubMed  CAS  Google Scholar 

  78. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101(11):2567–2578

    Article  PubMed  CAS  Google Scholar 

  79. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14):3964–3972

    Article  PubMed  CAS  Google Scholar 

  80. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 938:36–45, discussion 45–37

    Article  PubMed  CAS  Google Scholar 

  81. Rabbany SY, Heissig B, Hattori K, Rafii S (2003) Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 9(3):109–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research was supported by NHMRC grant number 632839, Barthelmes D. was supported by the Swiss National Foundation (SNF/SSMBS) and the Walter and Gertrud Siegenthaler Foundation Zurich, Switzerland.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Irhimeh.

Additional information

Daniel Barthelmes and Mohammad R. Irhimeh contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthelmes, D., Irhimeh, M.R., Gillies, M.C. et al. Isolation and characterization of mouse bone marrow-derived Lin/VEGF-R2+ progenitor cells. Ann Hematol 92, 1461–1472 (2013). https://doi.org/10.1007/s00277-013-1815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1815-0

Key words

Navigation