Skip to main content
Log in

Cytogenetics in acute myeloid leukemia

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Cytogenetic analysis is the most important diagnostic tool for determining prognosis in acute myeloid leukemia (AML). In the majority of patients with AML, acquired clonal chromosome aberrations can be observed. Numerous recurrent karyotype abnormalities have been discovered in AML. These findings on the chromosomal level have paved the way for molecular studies that have identified genes involved in the process of leukemogenesis. The identification of specific chromosomal abnormalities and their correlation with cytomorphologic features, immunophenotype, and clinical outcome have led to a new understanding of AML as a heterogeneous group of distinct biologic entities. The importance of cytogenetic findings in AML for classification and for the understanding of pathogenetic mechanisms is increasingly appreciated in the clinical context, and the new World Health Organization classification of AML uses cytogenetic abnormalities as a major criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heim S, Mitelman F: Cancer Cytogenetics. New York: Wiley-Liss; 1995.

    Google Scholar 

  2. Martinez-Climent JA: Molecular cytogenetics of childhood hematological malignancies. Leukemia 1997, 11:1999–2021.

    Article  PubMed  CAS  Google Scholar 

  3. Raimondi SC, Chang MN, Ravindranath Y, et al.: Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a Cooperative Pediatric Oncology Group Study-POG 8821. Blood 1999, 94:3707–3716.

    PubMed  CAS  Google Scholar 

  4. Martinez-Climent JA, Lane NJ, Rubin CM, et al.: Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia 1995, 9:95–101.

    PubMed  CAS  Google Scholar 

  5. Dastugue N, Payen C, Lafage Pochitaloff M, et al.: Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia 1995, 9:1491–1498.

    PubMed  CAS  Google Scholar 

  6. Berger R, Bernheim A, Ochoa Noguera ME, et al.: Prognostic significance of chromosomal abnormalities in acute nonlymphocytic leukemia: a study of 343 patients. Cancer Genet Cytogenet 1987, 28:293–299.

    Article  PubMed  CAS  Google Scholar 

  7. Fenaux P, Preudhomme C, Lai JL, Morel P, Beuscart R, Bauters F: Cytogenetics and their prognostic value in de novo acute myeloid leukaemia: a report on 283 cases. Br J Haematol 1989, 73:61–67.

    PubMed  CAS  Google Scholar 

  8. Swansbury GJ, Lawler SD, Alimena G, et al.: Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 1994, 73:1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Garson OM, Hagemeijer A, Sakurai M, et al.: Cytogenetic studies of 103 patients with acute myelogenous leukemia in relapse. Cancer Genet Cytogenet 1989, 40:187–202.

    Article  PubMed  CAS  Google Scholar 

  10. Estey E, Keating MJ, Stass S: Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 1995, 9:972–976.

    PubMed  CAS  Google Scholar 

  11. Schnittger S, Kinkelin U, Schoch C, et al.: Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000, 14:796–804.

    Article  PubMed  CAS  Google Scholar 

  12. Caligiuri MA, Strout MP, Schichman SA, et al.: Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 1996, 56:1418–1425.

    PubMed  CAS  Google Scholar 

  13. Schnittger S, Schoch C, Dugas M, et al.: Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia (AML): correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG-study, and usefulness as a marker for detection of minimal residual disease. Blood 2002, 100:59–66.

    Article  PubMed  CAS  Google Scholar 

  14. Heim S, Mitelman F: Secondary chromosome aberrations in the acute leukemias. Cancer Genet Cytogenet 1986, 22:331–338.

    Article  PubMed  CAS  Google Scholar 

  15. Mrózek K, Heinonen K, Bloomfield CD: Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol 2001, 14:19–47. Excellent review of chromosome abnormalities and their implication in AML covering all important aspects in detail.

    Article  PubMed  CAS  Google Scholar 

  16. Arthur DC, Berger R, Golomb HM, et al.: The clinical significance of karyotype in acute myelogenous leukemia. Cancer Genet Cytogenet 1989, 40:203–216.

    Article  PubMed  CAS  Google Scholar 

  17. Schoch C, Haferlach T, Bursch S, et al.: Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color-FISH. Genes Chromosomes Cancer 2002, in press.

  18. Haferlach T, Bennett JM, Löffler H, et al.:Acute myeloid leukemia with translocation (8;21): cytomorphology, dysplasia and prognostic factors in 41 cases. Leuk Lymphoma 1996, 23:227–234.

    PubMed  CAS  Google Scholar 

  19. Schoch C, Haase D, Haferlach T, et al.: Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia 1996, 10:1288–1295.

    PubMed  CAS  Google Scholar 

  20. Berger R, Le Coniat M, Derre J, et al.: Cytogenetic studies in acute promyelocytic leukemia: a survey of secondary chromosomal abnormalities. Genes Chromosomes Cancer 1991, 3:332–337.

    Article  PubMed  CAS  Google Scholar 

  21. Schoch C, Haase D, Haferlach T, et al.: Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22; q21): a report on 50 patients. Br J Haematol 1996, 94:493–500.

    Article  PubMed  CAS  Google Scholar 

  22. Slack JL, Arthur DC, Lawrence D, et al.: Secondary cytogenetic changes in acute promyelocytic leukemia: prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene. A Cancer and Leukemia Group B Study. J Clin Oncol 1997, 15:1786–1795.

    PubMed  CAS  Google Scholar 

  23. Marlton P, Keating MJ, Kantarjian HM, et al.: Cytogenetic and clinical correlates in AML patients with abnormalities of chromosome 16. Leukemia 1995, 9:965–971.

    PubMed  CAS  Google Scholar 

  24. Schoch C, Büchner T, Freund M, et al.: Fifty-nine cases of acute myeloid leukemia with inversion inv(16)(p13q22): do additional chromosomal aberrations influence prognosis? In Acute Leukemias, Prognostic Factors and Treatment Strategies, vol 6. Edited by Büchner T, Hiddemann W, Wörmann B, et al. Berlin, Heidelberg: Springer Verlag; 1997:11–16.

    Google Scholar 

  25. Hiorns LR, Swansbury GJ, Mehta J, et al.: Additional chromosome abnormalities confer worse prognosis in acute promyelocytic leukaemia. Br J Haematol 1997, 96:314–321.

    Article  PubMed  CAS  Google Scholar 

  26. Swansbury GJ, Slater R, Bain BJ, et al., on behalf of the European 11q23 Workshop: Hematological malignancies with t(9;11)(p21-22;q23): a laboratory and clinical study of 125 cases. Leukemia 1998, 12:792–800.

    Article  PubMed  CAS  Google Scholar 

  27. Pedersen-Bjergaard J, Rowley JD: The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation. Blood 1994, 83:2780–2786.

    PubMed  CAS  Google Scholar 

  28. Johansson B, Mertens F, Mitelman F: Primary vs. secondary neoplasia-associated chromosomal abnormalities: balanced rearrangements vs. genomic imbalances? Genes Chromosomes Cancer 1996, 16:155–163.

    Article  PubMed  CAS  Google Scholar 

  29. Grimwade D, Walker H, Oliver F, et al., on behalf of the Medical Research Council Adult and Children’s Leukemia Working Parties: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 1998, 92:2322–2333. Largest clinical trial demonstrating the prognostic impact of karyotype in AML.

    PubMed  CAS  Google Scholar 

  30. Schoch C, Haferlach T, Schnittger S, et al.: AML with recurring chromosome abnormalities as defined in the new WHOclassification: incidence of subgroups, additional genetic abnormalities, FAB subtype and age distribution in an unselected series of 1897 cytogenetically and moleculargenetically analysed AML [abstract]. Blood 2001, 98:457a.

    Article  Google Scholar 

  31. Caligiuri MA, Strout MP, Gilliland DG: Molecular biology of acute myeloid leukemia. Semin Oncol 1997, 24:32–44.

    PubMed  CAS  Google Scholar 

  32. Rowley JD: The role of chromosome translocations in leukemogenesis. Semin Hematol 1999, 36 (suppl 7):59–72. Important review of cytogenetic aberrations and molecular rearrangements in AML.

    PubMed  CAS  Google Scholar 

  33. Castilla LH, Wijmenga C, Wang Q, et al.: Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for knocked-in leukemia gene CBFB-MYH11. Cell 1996, 87:687–696.

    Article  PubMed  CAS  Google Scholar 

  34. Okuda T, Cai Z, Yang S, et al.: Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998, 91:3134–3143.

    PubMed  CAS  Google Scholar 

  35. Yu M, Honoki K, Andersoen J, et al.: MLL tandem duplication and multiple splicing in adult acute myeloid leukemia with normal karyotype. Leukemia 1996, 10:774–780.

    PubMed  CAS  Google Scholar 

  36. Nakao M, Yokota S, Iwai T, et al.: Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia 1996, 10:1911–1918.

    PubMed  CAS  Google Scholar 

  37. Schnittger S, Schoch C, Kern W, et al.: FLT3 length mutations in AML: correlation to cytogenetics, FAB-subtype, and prognosis in 652 patients [abstract]. Blood 2000, 96:826a.

    Google Scholar 

  38. Osato M, Asou N, Abdalla E, et al.: Biallelic and heterozygous point mutations in the runt domain of the AML1/ PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999, 93:1817–1824.

    PubMed  CAS  Google Scholar 

  39. Pabst T, Mueller BU, Zhang P, et al.: Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding proteinalpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001, 27:263–270.

    Article  PubMed  CAS  Google Scholar 

  40. Schoch C, Haferlach T, Haase D, et al., for the German AML Cooperative Group: Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol 2001, 112:118–126.

    Article  PubMed  CAS  Google Scholar 

  41. Bloomfield CD, Lawrence D, Byrd JC, et al.: Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 1998, 58:4173–4179. Study demonstrating the relationship between the prognostic impact of cytogenetics and treatment modalities.

    PubMed  CAS  Google Scholar 

  42. Büchner T, Hiddemann W, Wörmann B, et al.: Double induction strategy for acute myeloid leukemia: the effect of highdose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine. A randomized trial by the German AML Cooperative Group. Blood 1999, 93:4116–4124.

    PubMed  Google Scholar 

  43. Gale RP, Horowitz MM, Weiner RS, et al.: Impact of cytogenetic abnormalities on outcome of bone marrow transplants in acute myelogenous leukemia in first remission. Bone Marrow Transplant 1995, 16:203–208.

    PubMed  CAS  Google Scholar 

  44. Leith CP, Kopecky KJ, Godwin J, et al.: Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997, 89:3323–3329.

    PubMed  CAS  Google Scholar 

  45. Hiddemann W, Kern W, Schoch C, et al.: Management of acute myeloid leukemia in elderly patients. J Clin Oncol 1999, 17:3569–3576. Incidence of certain cytogenetic abnormalities varies with age, but prognosis of the karyotpe abnormality is independent of age.

    PubMed  CAS  Google Scholar 

  46. Schoch C, Kern W, Krawitz P, et al.: Dependence of age-specific incidence of acute myeloid leukemia on karyotype. Blood 2001, 98:3500. Two major cytogenetic subgroups can be identified in AML based on their age-dependent incidence.

    Article  PubMed  CAS  Google Scholar 

  47. Leone G, Mele L, Pulsoni A, et al.: The incidence of secondary leukemias. Haematologica 1999, 84:937–945.

    PubMed  CAS  Google Scholar 

  48. Pedersen-Bjergaard J, Philip P: Two different classes of therapy-related and de novo acute myeloid leukemia? Cancer Genet Cytogenet 1991, 55:119–124.

    Article  PubMed  CAS  Google Scholar 

  49. Ellis M, Ravid M, Lishner M: A comparative analysis of alkylating agent and epipodophyllotoxin-related leukemias. Leuk Lymphoma 1993, 11:9–13.

    PubMed  CAS  Google Scholar 

  50. Felix CA: Secondary leukemias induced by topoisomerasetargeted drugs. Biochim Biophys Acta 1998, 1440:233–255.

    Google Scholar 

  51. Pedersen-Bjergaard J, Philip P, Larsen SO, et al.: Therapy-related myelodysplasia and acute myeloid leukemia: cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series. Leukemia 1993, 7:1975–1986.

    PubMed  CAS  Google Scholar 

  52. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P: Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood 1995, 86:3542–3552.

    PubMed  CAS  Google Scholar 

  53. Pedersen-Bjergaard J, Andersen MK, Johansson B: Balanced chromosome aberrations in leukemias following chemotherapy with DNA-topoisomerase II inhibitors. J Clin Oncol 1998, 16:1897–1898.

    PubMed  CAS  Google Scholar 

  54. Secker-Walker LM, Moorman AV, Bain BJ, Mehta AB, on behalf of the EU Concerted Action 11q23 Workshop: Secondary acute leukemia and myelodysplastic syndrome with 11q23 abnormalities. Leukemia 1998, 12:840–844.

    Article  PubMed  CAS  Google Scholar 

  55. Pui C-H, Relling MV, Rivera GK, et al.: Epipodophyllotoxinrelated acute myeloid leukemia: a study of 35 cases. Leukemia 1995, 9:1990–1996.

    PubMed  CAS  Google Scholar 

  56. Andersen MK, Johansson B, Larsen SO, Pedersen-Bjergaard J: Chromosomal abnormalities in secondary MDS and AML: relationship to drugs and radiation with specific emphasis on the balanced rearrangements. Haematologica 1998, 83:483–488.

    PubMed  CAS  Google Scholar 

  57. Schoch C, Haferlach T, Sauerland MC, et al.: Prognostic significance of chromosome aberrations in therapyassociated acute myeloid leukemia [abstract]. Blood 1999, 94 (suppl 1):273a.

    Google Scholar 

  58. Kantarjian HM, Keating MJ, Walters RS, et al.: Therapy-related leukemia and myelodysplastic syndrome: clinical, cytogenetic, and prognostic features. J Clin Oncol 1986, 4:1748–1757.

    PubMed  CAS  Google Scholar 

  59. Pedersen-Bjergaard J, Philip P, Larsen SO, et al.: Chromosome aberrations and prognostic factors in therapy-related myelodysplasia and acute nonlymphocytic leukemia. Blood 1990, 76:1083–1091.

    PubMed  CAS  Google Scholar 

  60. Johansson B, Mertens F, Heim S, et al.: Cytogenetics of secondary myelodysplasia (sMDS) and acute nonlymphocytic leukemia (sANLL). Eur J Haematol 1991, 47:17–27.

    Article  PubMed  CAS  Google Scholar 

  61. Cortes J, O’Brien S, Kantarjian HM, et al.: Abnormalities of the long arm of chromosome 11 (11q) in patients with de novo and secondary acute myelogenous leukemias and myelodysplastic syndromes. Leukemia 1994, 8:2174–2178.

    PubMed  CAS  Google Scholar 

  62. Quesnel B, Kantarjian HM, Pedersen-Bjergaard J, et al.: Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol 1993, 11:2370–2379.

    PubMed  CAS  Google Scholar 

  63. Detourmignies L, Castaigne S, Stoppa AM, et al.: Therapyrelated acute promyelocytic leukemia: a report on 16 cases. J Clin Oncol 1992, 10:1430–1435.

    PubMed  CAS  Google Scholar 

  64. Gardin C, Chaibi P, de Revel T, et al.: Intensive chemotherapy with idarubicin, cytosine arabinoside, and granulocyte colony-stimulating factor (G-CSF) in patients with secondary and therapy-related acute myelogenous leukemia. Club de Reflexion en Hematologie. Leukemia 1997, 11:16–21.

    Article  PubMed  CAS  Google Scholar 

  65. Kern W, Schoch C, Haferlach T, et al.: Multivariate analysis of prognostic factors in patients with refractory and relapsed acute myeloid leukemia undergoing sequential high-dose cytosine arabinoside and mitoxantrone (S-HAM) salvage therapy: relevance of cytogenetic abnormalities. Leukemia 2000, 14:226–231.

    Article  PubMed  CAS  Google Scholar 

  66. Kantarjian HM, Keating MJ, Walters RS, et al.: The characteristics and outcome of patients with late relapse acute myelogenous leukemia. J Clin Oncol 1988, 6:232–238.

    PubMed  CAS  Google Scholar 

  67. Harris NL, Jaffe ES, Diebold J, et al.: World Health Organization classification of neoplastic diseases of hematopoietic and lymphoid tissue: report of the clinical advisory committee meeting—Airlie House, Virginia, November 1997. J Clin Oncol 1999, 17:3835–3849.

    PubMed  CAS  Google Scholar 

  68. Brunning RD, Matutes E, Harris NL, et al.: WHO histological classification of acute myeloid leukaemias. World Health Organization classification of tumors. In Pathology and Genetics: Tumors of Haematopoietic and Lymphoid Tissues. Edited by Jaffe ES, Harris NL, Stein H, Vardiman JW. Lyon: IARC Press; 2001:75–107. Important new classification of AML including genetic features.

    Google Scholar 

  69. Zhang FF, Murata-Collins JL, Gaytan P, et al.: Twenty-four color spectral karyotyping reveals chromosome aberrations in cytogenetically normal acute myeloid leukemia. Genes Chromosomes Cancer 2000, 28:318–328.

    Article  PubMed  CAS  Google Scholar 

  70. Speicher MR, Ward DC: The coloring of cytogenetics. Nat Med 1996, 2:1046–1048.

    Article  PubMed  CAS  Google Scholar 

  71. Speicher MR, Ballard SG, Ward DC: Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996, 12:368–375.

    Article  PubMed  CAS  Google Scholar 

  72. Schröck E, du Manoir S, Veldman T, et al.: Multicolor spectral karyotyping of human chromosomes. Science 1996, 273:494–497.

    Article  PubMed  Google Scholar 

  73. Veldman T, Vignon C, Schröck E, et al.: Hidden chromosome abnormalities in hematological malignancies detected by multicolour spectral karyotyping. Nat Genet 1997, 15:406–410.

    Article  PubMed  CAS  Google Scholar 

  74. Mohr B, Bornhäuser M, Thiede C, et al.: Comparison of spectral karyotyping and conventional cytogenetics in 39 patients with acute myeloid leukemia and myelodysplastic syndrome. Leukemia 2000, 14:1031–1038.

    Article  PubMed  CAS  Google Scholar 

  75. Hilgenfeld E, Padilla-Nash H, McNeil N, et al.: Spectral karyotyping and fluorescence in situ hybridization detect novel chromosomal aberrations, a recurring involvement of chromosome 21 and amplification of the MYC oncogene in acute myeloid leukemia M2. Br J Haematol 2001, 113:305–317.

    Article  PubMed  CAS  Google Scholar 

  76. Mrózek K, Heinonen K, Theil KS, Bloomfield CD: Spectral karyotyping in patients with acute myeloid leukemia and complex karyotype reveals hidden aberrations, including recurrent overrepresentation of 21q, 11q and 22q. Genes Chromosomes Cancer 2002, 34:137–153.

    Article  PubMed  Google Scholar 

  77. Odero MD, Carlson KM, Calasanz MJ, Rowley JD: Further characterization of complex chromosomal rearrangements in myeloid malignancies: spectral karyotyping adds precision in defining abnormalities associated with poor prognosis. Leukemia 2001, 15:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  78. Schoch C, Kohlmann A, Schnittger S, et al.: Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A 2002, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoch, C., Haferlach, T. Cytogenetics in acute myeloid leukemia. Curr Oncol Rep 4, 390–397 (2002). https://doi.org/10.1007/s11912-002-0032-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-002-0032-0

Keywords

Navigation