Skip to main content
Log in

Morphometric study of gender difference in osteoarthritis posterior tibial slope using three-dimensional magnetic resonance imaging

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Posterior tibial slope (PTS) is an important parameter of sagittal alignment associated with postoperative stability and kinematics after total knee arthroplasty (TKA). However, data are limited regarding the innate gender differences in PTS in Koreans. The current study separately measured the PTS of the medial and lateral tibial plateau on magnetic resonance images of 511 patients with knee joint osteoarthritis who had Kellgren and Lawrence grade 3 and 4 (430 women, 81 men) and compared the measurements between and within the genders. The tibia was then rotated to the tibial plateau with the tibial centroid axis and the PTS was evaluated from best-fit planes on the surface of the proximal tibia and individually for the medial, lateral, and overall plateaus. The average overall PTS was 10.0° ± 3.5°. The average overall PTS of the female and male patients was 10.2° ± 3.4° and 8.8° ± 4.0°, respectively. The average medial PTS was 10.4° ± 4.0°, significantly greater than the mean lateral PTS of 8.7° ± 3.9° (P < 0.05). The average medial and lateral tibial slopes for female patients were 10.7° ± 3.8° and 8.8° ± 3.8°, respectively, while the average medial and lateral tibial slopes for male patients were 8.9° ± 4.8° and 7.9° ± 4.7°, respectively. The medial and overall PTS were significantly greater in female patients than in male patients (P < 0.05). The results showed a gender difference in PTS and that medial PTS was greater than lateral PTS. These findings have clinical relevance in knee reconstructive surgery for determining ideal placement of the posterior slope tibial component. Surgeons should be aware of variability and gender differences in the tibial slope of patients undergoing TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bai B, Kummer FJ, Sala DA, Koval KJ, Wolinsky PR (2001) Effect of articular step-off and meniscectomy on joint alignment and contact pressures for fractures of the lateral tibial plateau. J Orthop Trauma 15(2):101–106

    Article  CAS  PubMed  Google Scholar 

  2. Bonin N, Ait Si Selmi T, Donell ST, Dejour H, Neyret P (2004) Anterior cruciate reconstruction combined with valgus upper tibial osteotomy: 12 years follow-up. Knee 11(6):431–437

    Article  CAS  PubMed  Google Scholar 

  3. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899

    Article  PubMed  Google Scholar 

  4. Brooks P (2009) Seven cuts to the perfect total knee. Orthopedics 32(9):1

    Google Scholar 

  5. Chiu K, Zhang S, Zhang G (2000) Posterior slope of tibial plateau in Chinese. J Arthroplasty 15(2):224–227

    Article  CAS  PubMed  Google Scholar 

  6. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture: two radiological tests compared. J Bone Joint Surg Br 76(5):745–749

    Article  CAS  PubMed  Google Scholar 

  7. Faschingbauer M, Sgroi M, Juchems M, Reichel H, Kappe T (2014) Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc 22(12):3163–3167

    Article  CAS  PubMed  Google Scholar 

  8. Gromov K, Korchi M, Thomsen MG, Husted H, Troelsen A (2014) What is the optimal alignment of the tibial and femoral components in knee arthroplasty? Acta Orthop 85(5):480–487

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haddad B, Konan S, Mannan K, Scott G (2012) Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg 78(6):757–763

    PubMed  Google Scholar 

  10. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ho JPY, Merican AM, Hashim MS, Abbas AA, Chan CK, Mohamad JA (2017) Three-Dimensional Computed Tomography Analysis of the Posterior Tibial Slope in 100 Knees. J Arthroplasty 32(10):3176–3183

    Article  PubMed  Google Scholar 

  12. Hofmann AA, Bachus KN, Wyatt RW (1991) Effect of the tibial cut on subsidence following total knee arthroplasty. Clin Orthop Relat Res 269:63–69

    Google Scholar 

  13. Igbigbi PS, Msamati BC, Matanje B (2003) Normal axial angles of the knee joint in adult indigenous Malawians. East Afr Med J 80(8):415–418

    CAS  PubMed  Google Scholar 

  14. Insall JN, Windsor RE, Scott WN (1993) Surgery of the knee, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  15. Jenny JY, Boeri C, Ballonzoli L, Meyer N (2005) Difficulties and reproducibility of radiological measurement of the proximal tibial axis according to Levigne. Rev Chir Orthop Reparatrice Appar Mot 91(7):658–663

    Article  PubMed  Google Scholar 

  16. Jiang C-C, Yip K, Liu T (1994) Posterior slope angle of the medial tibial plateau. J Formos Med Assoc 93(6):509–512

    CAS  PubMed  Google Scholar 

  17. Kang KT, Kim SH, Son J, Lee YH, Kim S, Chun HJ (2017) Probabilistic evaluation of the material properties of the in vivo subject-specific articular surface using a computational model. J Biomed Mater Res B Appl Biomater 105(6):1390–1400

    Article  CAS  PubMed  Google Scholar 

  18. Kang KT, Son J, Kwon OR, Baek C, Heo DB, Park KM, Kim HJ, Koh YG (2016) Morphometry of femoral rotation for total knee prosthesis according to gender in a Korean population using three-dimensional magnetic resonance imaging. Knee 23(6):975–980

    Article  PubMed  Google Scholar 

  19. Kang KT, Son J, Kwon OR, Baek C, Heo DB, Park KM, Kim HJ, Koh YG (2017) Effects of measurement methods for tibial rotation axis on the morphometry in Korean populations by gender. Knee 24(1):23–30

    Article  PubMed  Google Scholar 

  20. Kapandji IA (1987) The physiology of the joints: annotated diagrams of the mechanics of the human joints, vol 2. Churchill Livingstone, Lower Limb

    Google Scholar 

  21. Khattak MJ, Umer M, Davis ET, Habib M, Ahmed M (2010) Lower-limb alignment and posterior tibial slope in Pakistanis: a radiographic study. J Orthop Surg (Hong Kong) 18(1):22–25

    Article  Google Scholar 

  22. Kim KH, Bin SI, Kim JM (2012) The correlation between posterior tibial slope and maximal angle of flexion after total knee arthroplasty. Knee Surg Relat Res 24(3):158–163

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinathan P, Han SH, Han CW (2007) Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee 14(4):295–300

    Article  PubMed  Google Scholar 

  24. Lonner JH, Laird MT, Stuchin SA (1996) Effect of rotation and knee flexion on radiographic alignment in total knee arthroplasties. Clin Orthop Relat Res 331:102–106

    Article  Google Scholar 

  25. Lotke P (2003) Primary total knees: standard principles and techniques. J Knee Arthroplasty 49:1

    Google Scholar 

  26. Lustig S, Scholes CJ, Stegeman TJ, Oussedik S, Coolican MR, Parker DA (2012) Sagittal placement of the femoral component in total knee arthroplasty predicts knee flexion contracture at one-year follow-up. Int Orthop 36(9):1835–1839

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470(3):895–902

    Article  PubMed  Google Scholar 

  28. Ostermeier S, Hurschler C, Windhagen H, Stukenborg-Colsman C (2006) In vitro investigation of the influence of tibial slope on quadriceps extension force after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 14(10):934–939

    Article  PubMed  Google Scholar 

  29. Singh G, Tan JH, Sng BY, Awiszus F, Lohmann CH, Nathan SS (2013) Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Joint J 95(10):1354–1358

    Article  PubMed  Google Scholar 

  30. Sorin G, Pasquier G, Drumez E, Arnould A, Migaud H, Putman S (2016) Reproducibility of digital measurements of lower-limb deformity on plain radiographs and agreement with CT measurements. Orthop Traumatol Surg Res 102(4):423–428

    Article  CAS  PubMed  Google Scholar 

  31. Weinberg DS, Williamson DF, Gebhart JJ, Knapik DM, Voos JE (2017) Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 45(1):106–113

    Article  PubMed  Google Scholar 

  32. Yang B, Song CH, Yu JK, Yang YQ, Gong X, Chen LX, Wang YJ, Wang J (2014) Intraoperative anthropometric measurements of tibial morphology: comparisons with the dimensions of current tibial implants. Knee Surg Sports Traumatol Arthrosc 22(12):2924–2930

    Article  PubMed  Google Scholar 

  33. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 26(1):124–130

    Article  PubMed  Google Scholar 

  34. Zhang Y, Wang J, Xiao J, Zhao L, Li ZH, Yan G, Shi ZJ (2014) Measurement and comparison of tibial posterior slope angle in different methods based on three-dimensional reconstruction. Knee 21(3):694–698

    Article  PubMed  Google Scholar 

Download references

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Tak Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, YG., Nam, JH., Chung, HS. et al. Morphometric study of gender difference in osteoarthritis posterior tibial slope using three-dimensional magnetic resonance imaging. Surg Radiol Anat 42, 667–672 (2020). https://doi.org/10.1007/s00276-020-02429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-020-02429-3

Keywords

Navigation