Skip to main content
Log in

Intraoperative anthropometric measurements of tibial morphology: comparisons with the dimensions of current tibial implants

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purposes

This study analyzed morphological differences in the resected proximal tibial surfaces of Chinese males and females undergoing total knee arthroplasty (TKA) and compared the measurements with the dimensions of five currently used tibial implants.

Methods

The mediolateral (ML), middle anteroposterior (AP), medial anteroposterior (MAP), and lateral anteroposterior (LAP) dimensions of the resected tibial surfaces of 976 Chinese TKA knees (177 male, 799 female) were measured. The ML/AP ratio of every knee was calculated. These morphological data were compared with the dimensions of five currently used tibial implants.

Results

The ML, AP, MAP, and LAP dimensions of the resected proximal tibias showed significant differences according to gender. Compared with currently used tibial implants, the smaller implants showed tibial ML undersizing and the larger implants showed tibial ML overhang. The ML/AP aspect ratio progressively decreased with increasing AP dimension in the resected proximal tibias, which contrasts with the relatively constant or increased (NexGen) aspect ratio in currently used tibial implants. Males showed a higher ML/AP aspect ratio than females for a given AP dimension. This indicates that for an implant with a given AP dimension, the tibial ML dimension tends to be undersized in males and to overhang in females.

Conclusion

The results of this study may provide fundamental data for designing suitable tibial implants for use in the Chinese population, especially for design of gender-specific prostheses.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chaichankul C, Tanavalee A, Itiravivong P (2011) Anthropometric measurements of knee joints in Thai population: correlation to the sizing of current knee prostheses. Knee 18:5–10

    Article  PubMed  Google Scholar 

  2. Chau R, Gulati A, Pandit H, Beard DJ, Price AJ, Dodd CA, Gill HS, Murray DW (2009) Tibial component overhang following unicompartmental knee replacement-does it matter? Knee 16:310–313

    Article  CAS  PubMed  Google Scholar 

  3. Cheng KC, Chen YL, Ye ML, Chun HH (1999) A new approach of designing the tibial baseplate of total knee prostheses. Clin Biomech 14:112–117

    Article  CAS  Google Scholar 

  4. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, Fu YW, Li YQ (2009) Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 16:341–347

    Article  PubMed  Google Scholar 

  5. Chin PL, Tey TT, Ibrahim MY, Chia SL, Yeo SJ, Lo NN (2011) Intraoperative morphometric study of gender differences in Asian femurs. J Arthroplasty 26:984–988

    Article  PubMed  Google Scholar 

  6. Dai Y, Bischoff JE (2013) Comprehensive assessment of tibial plateau morphology in total knee arthroplasty: influence of shape and size on anthropometric variability. J Orthop Res 31(10):1643–1652

    Article  PubMed  Google Scholar 

  7. Gu Y, Hagg U, Wu J, Yeung S (2011) Differences in dentofacial characteristics between southern versus northern Chinese adolescents. Aust Orthod J 27:155–161

    PubMed  Google Scholar 

  8. Ha CW, Na SE (2012) The correctness of fit of current total knee prostheses compared with intra-operative anthropometric measurements in Korean knees. J Bone Joint Surg Br 94(5):638–641

    Article  CAS  PubMed  Google Scholar 

  9. Hartel MJ, Loosli Y, Gralla J, Kohl S, Hoppe S, Röder C, Eggli S (2009) The mean anatomical shape of the tibial plateau at the knee arthroplasty resection level: an investigation using MRI. Knee 16:452–457

    Article  PubMed  Google Scholar 

  10. Harwin SF, Greene KA, Hitt K (2007) Early experience with a new total knee implant: maximizing range of motion and function with gender-specific sizing. Surg Technol Int 16:199–205

    PubMed  Google Scholar 

  11. Hitt K, Shurman JR II, Greene K, McCarthy J, Moskal J, Hoeman T, Mont MA (2003) Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg [Am] 85-A:115–122

  12. Incavo SJ, Ronchetti PJ, Howe JG, Tranowski JP (1994) Tibial plateau coverage in total knee arthroplasty. Clin Orthop Relat Res 299:81–85

    PubMed  Google Scholar 

  13. Iorio R, Kobayashi S, Healy WL, Cruz AI Jr, Ayers ME (2007) Primary posterior cruciate-retaining total knee arthroplasty: a comparison of American and Japanese cohorts. J Surg Orthop Adv 16(4):164–170

    PubMed  Google Scholar 

  14. Küçükdurmaz F, Tuncay I, Elmadağ M, Tunçer N (2014) Morphometry of the medial tibial plateau in Turkish knees: correlation to the current tibial components of unicompartmental knee arthroplasty. Acta Orthop Traumatol Turc 48(2):147–151

    Article  PubMed  Google Scholar 

  15. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinathan P, Han SH, Han CW (2007) Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee 14:295–300

    Article  PubMed  Google Scholar 

  16. Li H, Zou Q, Xie Z, Liu Y, Zhong B, Yang S, Zheng P, Yang F, Fang Y, Wu Y (2009) A haplotype in STAT4 gene associated with rheumatoid arthritis in Caucasians is not associated in the Han Chinese population, but with the presence of rheumatoid factor. Rheumatology (Oxford) 48:1363–1368

    Article  CAS  Google Scholar 

  17. Lim HC, Bae JH, Yoon JY, Kim SJ, Kim JG, Lee JM (2013) Gender differences of the morphology of the distal femur and proximal tibia in a Korean population. Knee 20:26–30

    Article  PubMed  Google Scholar 

  18. Liu Z, Yuan G, Zhang W, Shen Y, Deng L (2013) Anthropometry of the proximal tibia of patients with knee arthritis in Shanghai. J Arthroplasy 28(5):778–783

    Article  Google Scholar 

  19. Mahfouz M, Abdel Fatah EE, Bowers LS, Scuderi G (2012) Three-dimensional morphology of the knee reveals ethnic differences. Clin Orthop Relat Res 470:172–185

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mahoney OM, Kinsey T (2010) Overhang of the femoral component in total knee arthroplasty: risk Factors and clinical consequences. J Bone Joint Surg [Am] 92:1115–1121

    Article  Google Scholar 

  21. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplast 17(8):1028–1032

    Article  CAS  Google Scholar 

  22. Westrich GH, Haas SB, Insall JN, Frachie A (1995) Resection specimen analysis of proximal tibial anatomy based on 100 total knee arthroplasty specimens. J Arthroplasy 10:47–51

    Article  CAS  Google Scholar 

  23. Westrich GH, Agulnick MA, Laskin RS, Haas SB, Sculco TP (1997) Current analysis of tibial coverage in total knee arthroplasty. Knee 4:87–91

    Article  Google Scholar 

  24. Wevers HW, Simurda M, Griffin M, Tarrel J (1994) Improved fit by asymmetric tibial prosthesis for total knee arthroplasty. Med Eng Phys 16:297–300

    Article  CAS  PubMed  Google Scholar 

  25. Yang B, Yu JK, Zheng ZZ, Lu ZH, Zhang JY, Cheng JH (2013) Computed tomography morphometric study of gender differences in osteoarthritis proximal tibias. J Arthroplasy 28:1117–1120

    Article  Google Scholar 

  26. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Differences of knee anthropometry between Chinese and white men and women. J Arthroplast 26:124–130

    Article  Google Scholar 

  27. Zhao Y, Liu X, Liu X, Su Y, Li Y, Zhang X, Zhu L, Wang S, Wang T, Jiang Q, Liu X, Li X, Huang C, Jia R, Lu X, Guo J, Li Z (2013) Association of STAT4 gene polymorphism with increased susceptibility of rheumatoid arthritis in a northern Chinese Han subpopulation. Int J Rheum Dis 16:178–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Study was funded by the Sino-Germany Cooperation Project of Ministry of Science and Technology of China (No. 2011DFA31340); the Beijing Science and Technology Planning Projects of Beijing Science and Technology Committee (No. Z131100005213004); Instrument Research Project of the National Natural Science Foundation (No. 81327001).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-kuo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Song, Ch., Yu, Jk. et al. Intraoperative anthropometric measurements of tibial morphology: comparisons with the dimensions of current tibial implants. Knee Surg Sports Traumatol Arthrosc 22, 2924–2930 (2014). https://doi.org/10.1007/s00167-014-3258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3258-0

Keywords

Navigation