Skip to main content
Log in

Plant viruses in irrigation water: reduced dispersal of viruses using sensor-based disinfection

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

The increasing use of recirculating nutrient solutions and drainage water for irrigation purposes requires effective sanitation methods to minimise the dispersal of plant pathogens. Among these, plant viruses are of particular interest because they cannot be cured. A new disinfection system was tested in regard to its ability to inactivate plant viruses in nutrient solution in greenhouses. Potassium hypochlorite produced onsite by an electrolytic disinfector and injected once weekly into the nutrient solution by a sensor, prevented the dispersal of Pepino mosaic virus in the tomato crop. The management program assures that virus particles released from infected plants do not accumulate, forming an infectious virus reservoir which represents an inoculum potential in the hydroponic system. Both tested applications at 0.2 or 0.5 mg free chlorine/l nutrient solution for 60 or 30 min ensured virus inactivation and did not cause phytotoxicity. The yield of tomato plants grown in KCIO-treated nutrient solution was even significantly higher than that of control plants. PepMV-infected source plants solely bore unmarketable tomatoes showing discoloration. By inhibiting the dispersal of PepMV and the infection of test plants, the amount of unmarketable tomato fruits was reduced rigorously in treated variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anonymous (2008) Disinfection in plant production. EPPO Bull 38:311–315

    Article  Google Scholar 

  • Anonymous (2013) PM 7/113 (1) Pepino mosaic virus. EPPO Bull 43:94–104

    Article  Google Scholar 

  • Bandte M, Pettitt TR (2014) Immunological methods for detection of plant pathogens in irrigation water. In: Hong C, Moorman GW, Wohanka W, Büttner C (eds) Biology, detection, and management of plant pathogens in irrigation water. APS Press, St. Paul, pp 149–160

    Google Scholar 

  • Bandte M, Neubert S, Obermeier C,Büttner C (2003) Untersuchungen zur Samenübertragbarkeit des Pepino mosaic virus (PepMV) an Tomaten (Lycopersicon esculentum L.) und Möglichkeiten der Dekontamination im Gartenbau. 4. In: Symposium für Phytomedizin & Pflanzenschutz im Gartenbau, 22.-25. September 2003, Univ. für Bodenkultur, Wien, 41–42

  • Blystad DR, van der Vlugt R, Alfaro-Fernández A, del Carmen Córdoba M, Bese G, Hristova D, Pospieszny H, Mehle N, Ravnikar M, Tomassoli L, Varveri C, Nielsen SL (2015) Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. Eur J Plant Pathol 143:43–56

    Article  Google Scholar 

  • Büttner C, König R (2014) Plant viruses in irrigation water. In: Hong C, Moorman GW, Wohanka W, Büttner C (eds) Biology, detection, and management of plant pathogens in irrigation water. APS Press, St Paul, pp 97–110

    Google Scholar 

  • Büttner C, Bandte M, Pettitt TR (2014) Filtration and centrifugation for detection of plant pathogens in irrigation water. In: Hong C, Moorman GW, Wohanka W, Büttner C (eds) Biology, detection, and management of plant pathogens in irrigation water. APS Press, St Paul, pp 139–148

    Google Scholar 

  • Cayanan DF, Zheng Y, Zhang P, Graham T, Dixon M, Chong C, Llewellyn J (2008) Sensitivity of five container-grown nursery species to chlorine in overhead irrigation water. HortScience 43(6):1882–1887

    Google Scholar 

  • Cayanan DF, Zhang P, Liu W, Dixon M, Zheng Y (2009) Efficacy of chlorine in controlling five common plant pathogens. HortScience 44(1):157–163

    Google Scholar 

  • Datnoff LE, Kroll TK, Lacy GH (1987) Efficacy of chlorine for decontaminating water infested with resting spores of Plasmodiophora brassicae. Plant Dis 71(8):734–736

    Article  CAS  Google Scholar 

  • Elmer WH, Buck J, Ahonsi MO, Copes WE (2014) Emerging technologies for irrigation water treatment. In: Hong C, Moorman GW, Wohanka W, Büttner C (eds) Biology, detection, and management of plant pathogens in irrigation water. APS Press, St Paul, pp 289–301

    Google Scholar 

  • Eurostat (2015) Tomaten, Erzeugung. http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=de&pcode=tag00035&plugin=1. Accessed 4 Aug 2015

  • Gil MI, Gómez-López VM, Hung YC, Allende A (2015) Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food Bioprocess Technol 8(6):1336–1348

    Article  CAS  Google Scholar 

  • Gohler F, Molitor HD (2002) Erdelose Kulturverfahren im Gartenbau. Eugen Ulmer GmbH & Co., Stuttgart

    Google Scholar 

  • Hanssen IM, Mumford R, Blystad DR, Cortez I, Hasiów-Jaroszewska B, Hristova D, Pagán I, Pereira A-M, Peters J, Pospieszny H, Ravnikar M, Stijger I, Tomassoli L, Varveri C, van der Vlugt R, Nielsen SL (2010) Seed transmission of Pepino mosaic virus in tomato. Eur J Plant Pathol 126(2):145–152

    Article  Google Scholar 

  • Hong C, Richardson PA, Kong P, Bush EA (2003) Efficacy of chlorine on multiple species of Phytophthora in recycled nursery irrigation water. Plant Dis 87(10):1183–1189

    Article  Google Scholar 

  • Hong C, Moorman GW, Wohanka W, Büttner C (eds) (2014) Biology, detection, and management of plant pathogens in irrigation water. APS Press, St Paul

    Google Scholar 

  • Jones RC, Koenig R, Lesemann DE (1980) Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol 94(1):61–68

    Article  CAS  Google Scholar 

  • Klapwijk J, Stijger CCMM (2000) Overdracht pepinomozaïekvirus door wittevlieg en Macrolophus. Groente en Fruit/Glasgroenten, 17

  • Kraft A (2008) Electrochemical water disinfection: a short review. Platin Met Rev 52(3):177–185

    Article  CAS  Google Scholar 

  • Mehle N, Gutiérrez-Aguirre I, Prezelj N, Delić D, Vidic U, Ravnikar M (2014) Survival and transmission of Potato virus Y, Pepino mosaic virus, and Potato spindle tuber viroid in water. Appl Environ Microbiol 80(4):1455–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noël P, Hance T, Bragard C (2014) Transmission of the Pepino mosaic virus by whitefly. Eur J Plant Pathol 138(1):23–27

    Article  Google Scholar 

  • Peters J, Mumford R, van der Vlugt R, Alfaro Fernandez A, Bese G, Glyn J, Lambourne C, Schenk M (2010) The effect of Pepino mosaic virus on tomato yield. In: 3rd international symposium on tomato diseases 914, pp 203–206

  • Poncet C, Offroy M, Bonnet G, Brun R (2001) Disinfection of recycling water in rose cultures. Acta Hortic 547:121–127

    Article  CAS  Google Scholar 

  • Raudales RE, Parke JL, Guy CL, Fisher PR (2014) Control of waterborne microbes in irrigation: a review. Agric Water Manag 143:9–28

    Article  Google Scholar 

  • Rosner A, Lachman O, Pearlsman M, Feigelson L, Maslenin L, Antignus Y (2006) Characterization of cucumber leaf spot virus isolated from recycled irrigation water of soil-less cucumber cultures. Ann Appl Biol 149:313–316

    Article  CAS  Google Scholar 

  • Särkkä H, Bhatnagar A, Sillanpää M (2015) Recent developments of electro-oxidation in water treatment—a review. J Electroanal Chem 754:46–56

    Article  Google Scholar 

  • Schwarz D, Beuch U, Bandte M, Fakhro A, Büttner C, Obermeier C (2010) Spread and interaction of Pepino mosaic virus (PepMV) and Pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathol 59(3):443–452

    Article  Google Scholar 

  • Shipp JL, Buitenhuis R, Stobbs L, Wang K, Kim WS, Ferguson G (2008) Vectoring of Pepino mosaic virus by bumble-bees in tomato greenhouses. Ann Appl Biol 153(2):149–155

    Article  Google Scholar 

  • Spence NJ, Basham J, Mumford RA, Hayman G, Edmondson R, Jones DR (2006) Effect of Pepino mosaic virus on the yield and quality of glasshouse-grown tomatoes in the UK. Plant Pathol 55(5):595–606

    Article  Google Scholar 

  • Stewart-Wade SM (2011) Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrig Sci 29(4):267–297

    Article  Google Scholar 

  • Van Haute S, Sampers I, Jacxsens L, Uyttendaele M (2015) Selection criteria for water disinfection techniques in agricultural practices. Crit Rev Food Sci Nutr 55:1529–1551

    Article  CAS  PubMed  Google Scholar 

  • Weber I, Proll E, Ostermann WD, Leiser RM, Stanarius A, Kegler H (1982) Charakterisierung des Gurkenblattflecken-Virus (Cucumber leaf spot virus), eines bisher, nicht bekannten Virus an Gewächshausgurken (Cucumis sativus L.). Archiv Phytopathologie und Pflanzenschutz 18:137–154

    Article  Google Scholar 

Download references

Acknowledgments

The investigation was financially supported on behalf of the German Federal Ministry of Food and Agriculture (Federal Office for Agriculture and Food, Grant No. 28-1-55.026-11 “Development of a recirculating irrigation system with reduced phytosanitary risk in greenhouses”). We thank Mr. Yuan Gao (Newtec Umwelttechnik GmbH, Berlin, Germany) for providing the electrolytic disinfector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Bandte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and that neither animal nor human rights are violated.

Additional information

Communicated by N. Lazarovitch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandte, M., Rodriguez, M., Schuch, I. et al. Plant viruses in irrigation water: reduced dispersal of viruses using sensor-based disinfection. Irrig Sci 34, 221–229 (2016). https://doi.org/10.1007/s00271-016-0500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-016-0500-1

Keywords

Navigation