Skip to main content
Log in

CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

The present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.

Methods

Fifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.

Results

Ninety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targeting precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.

Conclusions

The application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gupta S et al (2004) Various approaches for CT-guided percutaneous biopsy of deep pelvic lesions: anatomic and technical considerations. Radiographics 24(1):175–189

    Article  PubMed  Google Scholar 

  2. Long BW (2000) Image-guided percutaneous needle biopsy: an overview. Radiol Technol 71(4):335–359; quiz 360-363

    Google Scholar 

  3. Hussain S (1996) Gantry angulation in CT-guided percutaneous adrenal biopsy. Am J Roentgenol 166(3):537–539

    Article  CAS  Google Scholar 

  4. Odisio BC, Tam AL, Avritscher R, Gupta S, Wallace MJ (2012) CT-guided adrenal biopsy: comparison of ipsilateral decubitus versus prone patient positioning for biopsy approach. Eur Radiol 22(6):1233–1239

    Article  PubMed  Google Scholar 

  5. van Sonnenberg E et al (1981) Triangulation method for percutaneous needle guidance: the angled approach to upper abdominal masses. Am J Roentgenol 137(4):757–761

    Article  Google Scholar 

  6. Daly B, Templeton PA (1999) Real-time CT fluoroscopy: evolution of an interventional tool. Radiology 211(2):309–315

    PubMed  CAS  Google Scholar 

  7. Prosch H, Stadler A, Schilling M, Bürklin S, Eisenhuber E, Schober E, Mostbeck G (2012) CT fluoroscopy-guided versus multislice CT biopsy mode-guided lung biopsies: accuracy, complications and radiation dose. Eur J Radiol 81(5):1029–1033

    Article  PubMed  Google Scholar 

  8. Mirota DJ, Ishii M, Hager GD (2011) Vision-based navigation in image-guided interventions. Annu Rev Biomed Eng 13:297–319

    Article  PubMed  CAS  Google Scholar 

  9. Bale R, Widmann G (2007) Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 16(4):196–204

    Article  PubMed  Google Scholar 

  10. Schullian P et al (2011) Accuracy and diagnostic yield of CT-guided stereotactic liver biopsy of primary and secondary liver tumors. Comput Aided Surg 16(4):181–187

    Article  PubMed  Google Scholar 

  11. Rasmus M et al (2007) Robotically assisted CT-based procedures. Minim Invasive Ther Allied Technol 16(4):212–216

    Article  PubMed  CAS  Google Scholar 

  12. Widmann G et al (2010) Respiratory motion control for stereotactic and robotic liver interventions. Int J Med Robot 6(3):343–349

    Article  PubMed  Google Scholar 

  13. Banovac F et al (2005) Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med Phys 32(8):2698–2705

    Article  PubMed  Google Scholar 

  14. Maier-Hein L et al (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5385–5396

    Article  PubMed  Google Scholar 

  15. Lei P et al (2011) Real-time tracking of liver motion and deformation using a flexible needle. Int J Comput Assist Radiol Surg 6(3):435–446

    Article  PubMed  Google Scholar 

  16. Widmann G et al (2009) Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot 5(4):355–365

    Article  PubMed  Google Scholar 

  17. Stoffner R et al (2009) Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study. Rofo 181(9):851–858

    Article  PubMed  CAS  Google Scholar 

  18. Appelbaum L et al (2011) Electromagnetic navigation system for CT-guided biopsy of small lesions. Am J Roentgenol 196(5):1194–1200

    Article  Google Scholar 

  19. Carlson SK et al (2005) CT fluoroscopy-guided biopsy of the lung or upper abdomen with a breath-hold monitoring and feedback system: a prospective randomized controlled clinical trial. Radiology 237(2):701–708

    Article  PubMed  Google Scholar 

  20. Schoth F et al (2010) Evaluation of an interactive breath-hold control system in CT-guided lung biopsy. Rofo 182(6):507–511

    Article  PubMed  CAS  Google Scholar 

  21. Higgins TL, Hearn CJ, Maurer WG (1996) Conscious sedation: what an internist needs to know. Cleve Clin J Med 63(6):355–361

    Article  PubMed  CAS  Google Scholar 

  22. Gupta S, Madoff DC (2007) Image-guided percutaneous needle biopsy in cancer diagnosis and staging. Tech Vasc Interv Radiol 10(2):88–101

    Article  PubMed  Google Scholar 

  23. Yuan DM et al (2011) Diagnostic efficiency and complication rate of CT-guided lung biopsy: a single-center experience of the procedures conducted over a 10-year period. Chin Med J (Engl) 124(20):3227–3231

    Google Scholar 

  24. Sundaram M et al (1982) Utility of CT-guided abdominal aspiration procedures. Am J Roentgenol 139(6):1111–1115

    Article  CAS  Google Scholar 

  25. Syed R, Bishop JA, Ali SZ (2012) Sacral and presacral lesions: cytopathologic analysis and clinical correlates. Diagn Cytopathol 40(1):7–13

    Article  PubMed  Google Scholar 

  26. Triller J et al (1991) CT-guided biopsy of pelvic masses. Cardiovasc Intervent Radiol 14(1):63–68

    Article  PubMed  CAS  Google Scholar 

  27. Hau A et al (2002) Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skeletal Radiol 31(6):349–353

    Article  PubMed  Google Scholar 

  28. Schubert T et al (2012) CT-guided percutaneous biopsy of a mass lesion in the upper presacral space: a sacral transneuroforaminal approach. Cardiovasc Intervent Radiol 35(5):1255–1257

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Tilman Schubert, Augustinus L. Jacob, Michele Pansini, David Liu, Andreas Gutzeit, and Sebastian Kos declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Schubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, T., Jacob, A.L., Pansini, M. et al. CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience. Cardiovasc Intervent Radiol 36, 1055–1062 (2013). https://doi.org/10.1007/s00270-012-0527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-012-0527-5

Keywords

Navigation