Skip to main content

Advertisement

Log in

Real-time tracking of liver motion and deformation using a flexible needle

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation.

Methods

This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle.

Results

The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo.

Conclusion

A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tateishi R, Shiina S, Teratani T, Obi S, Sato S, Koike Y, Fujishima T, Yoshida H, Kawabe T, Omata M (2005) Percutaneous radiofrequency ablation for hepatocellular carcinoma: an analysis of 1000 cases. Cancer 103: 1201–1209. doi:10.1002/cncr.20892

    Article  PubMed  Google Scholar 

  2. Vogl TJ, Muller PK, Mack MG, Straub R, Engelmann K, Neuhaus P (1999) Liver metastases: interventional therapeutic techniques and results, state of the art. Eur Radiol 9: 675–684

    Article  PubMed  CAS  Google Scholar 

  3. Sutherland LM, Williams JA, Padbury RT, Gotley DC, Stokes B, Maddern GJ (2006) Radiofrequency ablation of liver tumors: a systematic review. Arch Surg 141: 181–190. doi:10.1001/archsurg.141.2.181

    Article  PubMed  Google Scholar 

  4. Antoch G, Kuehl H, Vogt FM, Debatin JF, Stattaus J (2002) Value of CT volume imaging for optimal placement of radiofrequency ablation probes in liver lesions. J Vasc Interv Radiol 13: 1155–1161

    Article  PubMed  Google Scholar 

  5. Baegert C, Villard C, Schreck P, Soler L, Gangi A (2007) Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors. Comput Aided Surg 12: 82–90. doi:10.1080/10929080701312000

    PubMed  Google Scholar 

  6. Sandrasegaran K, Rydberg J (2007) Fundamentals of multislice CT scanners. In: Boiselle P, White C (eds) New techniques in cardiothoracic imaging. Informa Healthcare, New York, p 1

    Google Scholar 

  7. Lei P, Dandekar O, Widlus D, Shekhar R (2009) Incorporation of preprocedural PET into CT-guided radiofrequency ablation of hepatic metastases: a nonrigid image registration validation study. J Digit Imaging (in press). doi:10.1007/s10278-009-9204-x

  8. Das M, Sauer F, Schoepf UJ, Khamene A, Vogt SK, Schaller S, Kikinis R, vanSonnenberg E, Silverman SG (2006) Augmented reality visualization for CT-guided interventions: system description, feasibility, and initial evaluation in an abdominal phantom. Radiology 240: 230–235. doi:10.1148/radiol.2401040018

    Article  PubMed  Google Scholar 

  9. Giesel FL, Mehndiratta A, Locklin J, McAuliffe MJ, White S, Choyke PL, Knopp MV, Wood BJ, Haberkorn U, von Tengg-Kobligk H (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31: 106–114

    PubMed  CAS  Google Scholar 

  10. Wein W, Brunke S, Khamene A, Callstrom MR, Navab N (2008) Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med Image Anal 12: 577–585. doi:S1361-8415(08)00063-7

    Article  PubMed  Google Scholar 

  11. Wein W, Khamene A, Clevert DA, Kutter O, Navab N (2007) Simulation and fully automatic multimodal registration of medical ultrasound. Med Image Comput Comput Assist Interv 10: 136–143

    PubMed  Google Scholar 

  12. Elhawary H, Oguro S, Tuncali K, Paul RM, Shyn BP, Tatli S, Silverman GS, Hata N (2009) Intra-operative multimodal non-rigid registration of the liver for navigated tumor ablation. Med Image Comput Comput Assist Interv 12: 837–844

    PubMed  Google Scholar 

  13. Hawkes DJ, Barratt D, Blackall JM, Chan C, Edwards PJ, Rhode K, Penney GP, McClelland J, Hill DL (2005) Tissue deformation and shape models in image-guided interventions: a discussion paper. Med Image Anal 9: 163–175. doi:10.1016/j.media.2004.11.007

    Article  PubMed  CAS  Google Scholar 

  14. Lu W, Chen ML, Olivera GH, Ruchala KJ, Mackie TR (2004) Fast free-form deformable registration via calculus of variations. Phys Med Biol 49: 3067–3087

    Article  PubMed  Google Scholar 

  15. Sdika M (2008) A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization. IEEE Trans Med Imaging 27: 271–281. doi:10.1109/Tmi.2007.905820

    Article  PubMed  Google Scholar 

  16. Slomka PJ, Dey D, Przetak C, Aladl UE, Baum RP (2003) Automated 3-dimensional registration of stand-alone (18)F-FDG whole-body PET with CT. J Nucl Med 44: 1156–1167

    PubMed  Google Scholar 

  17. de Baere T, Rehim MA, Teriitheau C, Deschamps F, Lapeyre M, Dromain C, Boige V, Ducreux M, Elias D (2006) Usefulness of guiding needles for radiofrequency ablative treatment of liver tumors. Cardiovasc Intervent Radiol 29: 650–654. doi:10.1007/s00270-005-0187-9

    Article  PubMed  Google Scholar 

  18. Tomiyama N, Mihara N, Maeda M, Johkoh T, Kozuka T, Honda O, Hamada S, Yoshida S, Nakamura H (2000) CT-guided needle biopsy of small pulmonary nodules: value of respiratory gating. Radiology 217: 907–910

    PubMed  CAS  Google Scholar 

  19. Levy EB, Zhang H, Lindisch D, Wood BJ, Cleary K (2007) Electromagnetic tracking-guided percutaneous intrahepatic portosystemic shunt creation in a swine model. J Vasc Interv Radiol 18: 303–307. doi:10.1016/j.jvir.2006.12.716

    Article  PubMed  Google Scholar 

  20. Levy EB, Tang J, Lindisch D, Glossop N, Banovac F, Cleary K (2007) Implementation of an electromagnetic tracking system for accurate intrahepatic puncture needle guidance: accuracy results in an in vitro model. Acad Radiol 14: 344–354. doi:10.1016/j.acra.2006.12.004

    Article  PubMed  Google Scholar 

  21. Wong K, Tang J, Zhang H, Varghese E, Cleary RK (2005) Prediction of 3D internal organ position from skin surface motion: results from electromagnetic tracking studies. Proc SPIE 5744: 879–887

    Article  Google Scholar 

  22. Borgert J, Kruger S, Timinger H, Krucker J, Glossop N, Durrani A, Viswanathan A, Wood BJ (2006) Respiratory motion compensation with tracked internal and external sensors during CT-guided procedures. Comput Aided Surg 11: 119–125. doi:10.3109/10929080600740871

    PubMed  Google Scholar 

  23. Khamene A, Warzelhan JK, Vogt S, Elgort D, Chefd’Hotel C, Duerk JL, Lewin J, Wacker FK, Sauer F (2004) Characterization of internal organ motion using skin marker positions. In: Medical image computing and computer-assisted intervention—MICCAI 2004, Pt 2, proceedings, vol 3217, pp 526–533

  24. Kothary N, Dieterich S, Louie JD, Chang DT, Hofmann LV, Sze DY (2009) Percutaneous implantation of fiducial markers for imaging-guided radiation therapy. AJR Am J Roentgenol 192: 1090–1096. doi:10.2214/AJR.08.1399

    Article  PubMed  Google Scholar 

  25. Kothary N, Heit JJ, Louie JD, Kuo WT, Loo BW Jr, Koong A, Chang DT, Hovsepian D, Sze DY, Hofmann LV (2009) Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol 20: 235–239. doi:10.1016/j.jvir.2008.09.026

    Article  PubMed  Google Scholar 

  26. Bricault I, DiMaio S, Clatz O, Pujol S, Vosburgh K, Kikinis R (2005) Computer-assisted interventions on liver feasibility of the “anchor needle” technique. Surgetica 2005—computer-aided medical interventions: tools and applications, pp 348–352

  27. Krücker J, Xu S, Glossop N, Pritchard FW, Karanian J, Chiesa A, Wood BJ (2008) Evaluation of motion compensation approaches for soft tissue navigation. Proc SPIE 6918: 691814

    Article  Google Scholar 

  28. Maier-Hein L, Muller SA, Pianka F, Worz S, Muller-Stich BP, Seitel A, Rohr K, Meinzer HP, Schmied BM, Wolf I (2008) Respiratory motion compensation for CT-guided interventions in the liver. Comput Aided Surg 13: 125–138. doi:10.3109/10929080802091099

    PubMed  Google Scholar 

  29. Maier-Hein L, Tekbas A, Franz AM, Tetzlaff R, Muller SA, Pianka F, Wolf I, Kauczor HU, Schmied BM, Meinzer HP (2008) On combining internal and external fiducials for liver motion compensation. Comput Aided Surg 13: 369–376. doi:10.3109/10929080802610674

    Article  PubMed  Google Scholar 

  30. Orozco M, Gorges S, Pescatore J (2008) Respiratory liver motion tracking during transcatheter procedures using guidewire detection. Int J CARS 3: 79–83. doi:10.1007/s11548-008-0214-9

    Article  Google Scholar 

  31. Mortenson M (1985) Geometric modeling. Wiley, New York

    Google Scholar 

  32. Buchholz RH (1992) Perfect pyramids. Bull Austral Math Soc 45: 353–368

    Article  Google Scholar 

  33. Shirabe K, Takenaka K, Gion T, Fujiwara Y, Shimada M, Yanaga K, Maeda T, Kajiyama K, Sugimachi K (1997) Analysis of prognostic risk factors in hepatic resection for metastatic colorectal carcinoma with special reference to the surgical margin. Br J Surg 84: 1077–1080

    Article  PubMed  CAS  Google Scholar 

  34. Elias D, Cavalcanti A, Sabourin JC, Lassau N, Pignon JP, Ducreux M, Coyle C, Lasser P (1998) Resection of liver metastases from colorectal cancer: the real impact of the surgical margin. Eur J Surg Oncol 24: 174–179

    Article  PubMed  CAS  Google Scholar 

  35. Hara W, Soltys SG, Gibbs IC (2007) CyberKnife robotic radiosurgery system for tumor treatment. Expert Rev Anticancer Ther 7: 1507–1515. doi:10.1586/14737140.7.11.1507

    Article  PubMed  Google Scholar 

  36. Rohlfing T, Maurer CR Jr, O’Dell WG, Zhong J (2004) Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med Phys 31: 427–432

    Article  PubMed  Google Scholar 

  37. Yaniv Z, Wilson E, Lindisch D, Cleary K (2009) Electromagnetic tracking in the clinical environment. Med Phys 36: 876–892

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Shekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, P., Moeslein, F., Wood, B.J. et al. Real-time tracking of liver motion and deformation using a flexible needle. Int J CARS 6, 435–446 (2011). https://doi.org/10.1007/s11548-010-0523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0523-7

Keywords

Navigation