Skip to main content
Log in

Magnetic Resonance Angiography: Current Status in the Planning and Follow-Up of Endovascular Treatment in Lower-Limb Arterial Disease

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance angiography (MRA) has become an established imaging modality in the management of lower-limb arterial disease, with emerging roles in treatment planning and follow-up. Contrast-enhanced MRA is now the most widely used technique with clinically acceptable results in the majority of patients. Difficulties in imaging and image interpretation are recognised in certain subgroups, including patients with critical limb ischaemia as well as patients with stents. Although newer contrast agents and refined imaging protocols may offer some solutions to these problems, this optimism is balanced by concerns about the toxicity of certain gadolinium chelates. Further development of interventional MRA remains one of the most significant challenges in the development of magnetic resonance imaging–guided peripheral vascular intervention. The status of MRA in managing patients with lower-limb arterial disease in current clinical practice is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Voyt NT, Wolfson SK, Kuller LH (1992) Lower extremity arterial disease and the ageing process: a review. J Clin Epidemiol 45:529–542

    Article  Google Scholar 

  2. Malone JM (1993) Lower extremity amputation. In: Moore WS (ed) Vascular surgery: a comprehensive review. Saunders, Philadelphia, PA, pp 809–854

    Google Scholar 

  3. Waugh JR, Sacharias N (1992) Arteriographic complications in the DSA era. Radiology 182:243–246

    PubMed  CAS  Google Scholar 

  4. Reidy JF, Ludman C (1996) Technical note: safety of outpatient arteriography using 3F catheters. Br J Radiol 66:1048–1052

    Article  Google Scholar 

  5. Gradinscak DJ, Young N, Jones Y et al (2004) Risks of outpatient angiography and interventional procedures: a prospective study. Am J Roentgenol 183:377–381

    Google Scholar 

  6. Steen H, Lima JA, Chatterjee S et al (2007) High-resolution three-dimensional aortic magnetic resonance angiography and quantitative vessel wall characterization of different atherosclerotic stages in a rabbit model. Invest Radiol 42:614–621

    Article  PubMed  Google Scholar 

  7. Yucel EK, Kaufman JA, Waltman AC (1993) Atherosclerotic occlusive disease of the lower extremity: prospective evaluation with two dimensional time of flight MR angiography. Radiology 187:635–641

    Google Scholar 

  8. Carpenter JP, Baum RA, Pentecost MJ et al (1994) Peripheral vascular surgery with magnetic resonance angiography as the sole preoperative imaging modality. J Vasc Surg 20:861–869

    PubMed  CAS  Google Scholar 

  9. McCauley TR, Monib A, Dickey KW et al (1994) Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology 192:351–355

    PubMed  CAS  Google Scholar 

  10. Glickerman DJ, Obregon RG, Schmiedl UP et al (1996) Cardiac gated MR angiography of the entire lower extremity. A prospective comparison with conventional angiography. Am J Roentgenol 167:445–451

    CAS  Google Scholar 

  11. Snidow JJ, Harris VJ, Treotola SO et al (1995) Interpretations and treatment decisions based on MR angiography versus conventional arteriography in symptomatic lower extremity ischaemia. J Vasc Interv Radiol 6:595–599

    Article  PubMed  CAS  Google Scholar 

  12. Ho KY, de Haan MW, Oei TK et al (1997) MR angiography of the iliac and upper femoral arteries using four different inflow techniques. Am J Roentgenol 169:45–53

    CAS  Google Scholar 

  13. Baum RA, Rutter CM, Sunshine JH et al (1995) Multicenter trial to evaluate peripheral vascular resonance angiography. J Am Med Assoc 274:875–880

    Article  CAS  Google Scholar 

  14. Hesselink JR (2006) MR angiography: techniques and applications. University of California, San Diego, CA. http://spinwarp.ucsd.edu/NeuroWeb/Text/MRANGIO.htm. Accessed Aug 2008

  15. Saloner D (1995) The AAPM/RSNA physics tutorial for residents. An introduction to MR angiography. Radiographics 15:453–465

    PubMed  CAS  Google Scholar 

  16. Steffens J-C, Link J, Schwarzenberg H et al (1999) Lower extremity occlusive disease: diagnostic imaging with a combination of cardiac-gated 2D phase-contrast and cardiac-gated 2D time-of-flight MRA. J Comput Assist Tomogr 23:7–12

    Article  PubMed  CAS  Google Scholar 

  17. Jones D, Pressdee J, Lamont PM, Baird RN et al (1998) A phase contrast rephase/dephase sequence of magnetic resonance angiography (MRA): a new technique for imaging distal run-off in the pre-operative evaluation of peripheral vascular disease. Clin Radiol 53:333–337

    Article  PubMed  CAS  Google Scholar 

  18. Ekelund L, Sjoqvist L, Thuomas KA et al (1996) MR angiography of abdominal and peripheral arteries techniques and clinical applications. Acta Radiol 37:3–13

    PubMed  CAS  Google Scholar 

  19. Gozzi M, Amorico MG, Colopi S et al (2006) Peripheral arterial occlusive disease: role of MR angiography. Radiol Med (Torino) 111:225–237

    Article  CAS  Google Scholar 

  20. Hentsch A, Aschauer MA, Balzer JO et al (2003) Gadobutrol-enhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multi-centre blinded comparison with digital subtraction angiography. Eur Radiol 13:2103–2114

    Article  PubMed  Google Scholar 

  21. Snidow JJ, Johnson MS, Harris VJ et al (1996) Three dimensional gadolinium enhanced MR angiography for aorto-iliac inflow assessment plus renal artery screening in a single breath hold. Radiology 198:725–729

    PubMed  CAS  Google Scholar 

  22. Rofsky NM, Johnson G, Adelman MA et al (1997) Peripheral vascular disease evaluated with reduced-dose gadolinium-enhanced MR angiography. Radiology 205:683–692

    Google Scholar 

  23. Ho KY, Leiner T, de Haan MW, Kessels AG et al (1998) Peripheral vascular tree stenosis: evaluation of moving bed infusion-tracking MR angiography. Radiology 206:683–692

    PubMed  CAS  Google Scholar 

  24. Meaney FM, Ridgway JP, Chakraverty S et al (1999) Stepping table gadolinium enhanced digital subtraction MR angiography of the aorta and lower extremityarteries: preliminary experience. Radiology 211:59–67

    PubMed  CAS  Google Scholar 

  25. Sueyoshi E, Sakamoro I, Matsuoko Y et al (1999) Aortoiliac and lower extremity arteries: comparison of three dimensional dynamic contrast enhanced subtraction MR angiography and conventional angiography. Radiology 210:683–688

    PubMed  CAS  Google Scholar 

  26. Ruehm SG, Hany TF, Pfammatter T et al (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. Am J Roentgenol 174:1127–1135

    CAS  Google Scholar 

  27. Ho VB, Choyke PL, Foo TK, Hood MN, Miller DL, Aisen AM (1999) Automated bolus chase peripheral MR angiography: initial practical experiences and future directions of this work-in-progress. J Magn Reson Imaging 10:376–388

    Article  PubMed  CAS  Google Scholar 

  28. Rofsky NM, Adelman MA (2000) MR angiography in the evaluation of atherosclerotic peripheral vascular disease. Radiology 214:325–338

    PubMed  CAS  Google Scholar 

  29. Hingorani A, Ascher E, Markevich N et al (2004) A comparison of magnetic resonance angiography, contrast arteriography and duplex arteriography for patients undergoing lower extremity revascularisation. Ann Vasc Surg 18:294–301

    Article  PubMed  Google Scholar 

  30. Wang Y, Lee H, Khilani N (1998) Bolus chase MR digital subtraction angiography in the lower extremity. Radiology 207:263–269

    PubMed  CAS  Google Scholar 

  31. Morasch MD, Collins J, Pereles FS et al (2003) Lower extremity stepping-table magnetic resonance angiography with multilevel contract timing and segmented contrast infusion. J Vasc Surg 37:62–71

    Article  PubMed  Google Scholar 

  32. Joarder R, Gedroyc WM (2001) Magnetic resonance angiography: the state of the art. Eur Radiol 11:446–453

    Article  PubMed  CAS  Google Scholar 

  33. Quinn SF, Sheley RC, Semonsen KG et al (1998) Aortic and lower extremity arterial disease: evaluation with MR angiography versus conventional angiography. Radiology 206:693–701

    PubMed  CAS  Google Scholar 

  34. Ruehm SG, Hany TF, Pfammatter T et al (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. Am J Roetgenol 174:1127–1135

    CAS  Google Scholar 

  35. Linc J, Steffens JC, Brossmann J et al (1999) Ileofemoral arterial occlusive disease: contrast-enhanced MR angiography for preinterventional evaluation and follow-up after stent placement. Radiology 212:371–377

    Google Scholar 

  36. Mitsuzaki K, Yamashita Y, Sakaguchi T et al (2000) Abdomen, pelvis and extremities: diagnostic accuracy of dynamic contrast-enhanced turbo MR angiography—initial experience. Radiology 216:909–915

    PubMed  CAS  Google Scholar 

  37. Janka R, Wenkel E, Fellner C et al (2006) Magnetic resonance angiography of the peripheral vessels in patients with peripheral arterial occlusive disease: when is an additional conventional angiography required? Cardiovasc Intervent Radiol 29:220–229

    Article  PubMed  CAS  Google Scholar 

  38. Fenchel S, Wisianowsky C, Schams S et al (2002) Contrastenhanced 3D MRA of the aortoiliac and infrainguinal arteries when conventional transfemoral arteriography is not feasible. J Endovasc Ther 9:511–519

    Article  PubMed  Google Scholar 

  39. Penfield JG, Reilly RF Jr (2007) What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3:654–668

    Article  PubMed  Google Scholar 

  40. Medicines and Healthcare Products Regulatory Agency (online 7 Feb 2007) Public assessment report: increased risk of nephrogenic fibrosing dermopathy/neprogenic systemic fibrosis and gadolinium-containing MRI contrast agents. http://www.mhra.gov.uk/home/idcplg/IdcService+SS_GET_PAGE&ssTargetNodeld+221). Accessed Aug 2008

  41. Thomsen HS, European Society of Eurogenital Radiology (ESUR) (2007) ESUR guideline: gadolinium-based contrast media and nephrogenic systemic fibrosis. Eur Radiol 17:2692–2696

    Article  PubMed  Google Scholar 

  42. Rapp JH, Wolff SD, Quinn SF et al (2005) Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography—multicenter comparative phase III study. Radiology 236:71–78

    Article  PubMed  Google Scholar 

  43. Goyen M, Edelman M, Perreault P et al (2005) MR angiography of aortoiliac occlusive disease: a phase iii study of the safety and effectiveness of the blood-pool contrast agent MS–325. Radiology 236:825–836

    Article  PubMed  Google Scholar 

  44. Henness S, Keating GM (2006) Gadofosveset. Drugs 66:851–857

    Article  PubMed  CAS  Google Scholar 

  45. Schonberg S, Meaney J (2006) Vasovist―Founder of a new class of MRA contrast agents: first pass and beyond. Eur Radiol Suppl 16(Suppl 2):B1–B23

    Google Scholar 

  46. Leiner T (2004) Contrast-enhanced MRA in the workup of peripheral arterial occlusive disease. Imaging Decis 1:21–28

    Google Scholar 

  47. Nelemans PJ, Leiner T, de Vet HC et al (2000) Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology 217:105–114

    PubMed  CAS  Google Scholar 

  48. Koelemay MJ, Lijmer LG, Stoker J et al (2001) Magnetic resonance angiography for evaluation of lower extremity arterial disease: a meta-analysis. JAMA 285:1338–1345

    Article  PubMed  CAS  Google Scholar 

  49. Hoogeveen RM, Bakker CJG, Viergever MA (1998) Limits to the accuracy of vessel diameter measurement in MR angiography. J Magn Reson Imaging 8:1228–1235

    Article  PubMed  CAS  Google Scholar 

  50. de Vries M, de Koning PJ, de Haan MW et al (2005) Accuracy of semiautomated analysis of 3D contrast-enhanced magnetic resonance angiography for detection and quantification of aortoiliac stenosis. Invest Radiol 40:495–503

    Article  PubMed  Google Scholar 

  51. Westenberg JJM, van der Geest RJ, Wasser M et al (2000) Vessel-diameter measurements in gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries. Magn Reson Imaging 18:13–22

    Article  PubMed  CAS  Google Scholar 

  52. Poon E, Yucel EK, Pagan-Marin H et al (1997) Iliac artery stenosis measurements: comparison of two dimensional time-of-flight and three dimensional dynamic gadolinium-enhanced MR angiography. AJR Am J Roentgonol 169:1139–1144

    CAS  Google Scholar 

  53. Snidow JJ, Aisen AM, Harris VJ et al (1995) Iliac artery MR angiography: comparison of three-dimensional gadolinium enhanced and two-dimensional time-of-flight techniques. Radiology 196:371–378

    PubMed  CAS  Google Scholar 

  54. Snidow JJ, Johnson MS, Harris VJ et al (1996) Three-dimensional gadolinium enhanced MR angiography for aortoiliac inflow assessment plus renal artery screening in a single breadth hold. Radiology 198:725–732

    PubMed  CAS  Google Scholar 

  55. Hany TF, Debatin JF, Leung DA et al (1997) Evaluation of aortoiliac and renal arteries: comparison of breadth hold, contrast-enhanced, three-dimensional MR angiography with conventional catheter angiography. Radiology 204:357–362

    PubMed  CAS  Google Scholar 

  56. Wikstrom J, Holmberg A, Johansson L et al (2000) Gadolinium-enhanced magnetic resonance angiography, digital subtraction angiography and duplex of the iliac arteries compared with intra-arterial pressure gradient measurements. Eur J Vasc Endovasc Surg 19:516–523

    Article  PubMed  CAS  Google Scholar 

  57. Torreggiani WC, Varghese J, Haslam P et al (2002) Prospective comparison of MRA with catheter angiography in the assessment of patients with aortoiliac occlusion before surgery or endovascular therapy. Clin Radiol 57:625–631

    Article  PubMed  CAS  Google Scholar 

  58. Leiner T, Kessels AG, Nelemans PJ et al (2005) Peripheral arterial disease: comparison of color duplex US and contrast enhanced MR angiography for diagnosis. Radiology 235:699–708

    Article  PubMed  Google Scholar 

  59. Tins B, Oxtoby J, Patel S (2001) Comparison of CT angiography with conventional arterial angiography in aortoiliac occlusive disease. Br J Radiol 74:219–225

    PubMed  CAS  Google Scholar 

  60. Visser K, Hunink MG (2000) Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US—a meta-analysis. Radiology 216:67–77

    PubMed  CAS  Google Scholar 

  61. Hood MN, Ho VB, Foo TKF et al (2002) High resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries: lesson for improving bolus-chase peripheral MRA. J Magn Reson Imaging 20:543–549

    Article  Google Scholar 

  62. Lapeyre M, Kobeiter H, Desgranges P et al (2005) Assessment of critical limb ischaemia in patients with diabetes: comparison of MR angiography and digital subtraction angiography. AJR Am J Roentgenol 185:1641–1650

    Article  PubMed  Google Scholar 

  63. Bilecen D, Schulte A-C, Bongartz G et al (2004) Infragenual cuff-compression reduces venous contamination in contrast-enhanced MR angiography of the calf. J Magn Reson Imaging 20:347–351

    Article  PubMed  Google Scholar 

  64. Kreitner KF, Kalden P, Neufang A et al (2000) Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction. AJR Am J Roentgenol 174:171–179

    PubMed  CAS  Google Scholar 

  65. Dorweiler B, Neufang A, Kreitner KF et al (2002) Magnetic resonance angiography un-masks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus. J Vasc Surg 35:766–772

    Article  PubMed  Google Scholar 

  66. Leiner T, Tordoir JHM, Kessels AGH et al (2003) Comparison of treatment plans for peripheral arterial disease made with multi-station contrast medium enhanced magnetic resonance angiography and duplex ultrasound scanning. J Vasc Surg 37:1255–1262

    Article  PubMed  Google Scholar 

  67. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Intersociety Concensus (TASC). J Vasc Surg 31(Supp l):S1–S296

    Google Scholar 

  68. Prince MR, Chabra SG, Watts R et al (2002) Contrast material travel times in patients undergoing peripheral MR angiography. Radiology 224:55–61

    Article  PubMed  Google Scholar 

  69. Foo TK, Ho VB, Hod MN et al (2001) High-spatial-resolution multistation MR imaging of lower extremity vasculature with segmented volume acquisition: feasibility study. Radiology 219:835–841

    PubMed  CAS  Google Scholar 

  70. Hany TF, Carroll TJ, Omary RA et al (2001) Aorta and run-off vessels: single injection MR angiography with automated table movement compared with multi-injection time-resolved MR angiography—initial results. Radiology 221:266–272

    Article  PubMed  CAS  Google Scholar 

  71. Morasch MD, Collins J, Pereles FS et al (2003) Lower extremity stepping table magnetic resonance angiography with multilevel contrast timing of segmented contrast infusion. J Vasc Surg 37:62–71

    Article  PubMed  Google Scholar 

  72. Binkert CA, Baker PD, Peterson BD et al (2004) Peripheral vascular disease: blinded study of dedicated calf MR angiography and film hard-copy angiography. Radiology 232:860–866

    Article  PubMed  Google Scholar 

  73. Janka R, Fellner FA, Fellner C (2000) A hybrid technique for the automatic floating table MRA of peripheral arteries using a dedicated phased-array coil combination. Rofo 172:477–481

    PubMed  CAS  Google Scholar 

  74. Mell M, Tefera G, Thornton F et al (2007) Clinical utility of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography for infrageniculate arterial occlusive disease. J Vasc Surg 45:543–548

    Article  PubMed  Google Scholar 

  75. Bartels LW, Smits HF, Bakker CJ, Viergever MA (2001) MR imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents. J Vasc Interv Radiol 12:365–371

    Article  PubMed  CAS  Google Scholar 

  76. Bartels LW, Bakker CJG, Viergever MA (2002) Improved lumen visualization in metallic vascular implants by reducing RF artefacts. J Magn Reson Med 47:171–180

    Article  Google Scholar 

  77. Quick HH, Ladd ME, Nanz D et al (1999) Vascular stents as RF antennas for intravascular MR guidance and imaging. J Magn Reson Med 42:738–745

    Article  CAS  Google Scholar 

  78. Maintz D, Kugel H, Schellhammer F et al (2001) In vitro evaluation of intravascular stent artefacts in three-dimensional MR angiography. Invest Radiol 36:218–224

    Article  PubMed  CAS  Google Scholar 

  79. Maintz D, Tombach B, Juergens K-U (2002) Revealing in-stent stenoses of the iliac arteries: comparison of multidetector CT with MR angiography and digital radiographic angiography in a phantom model. AJR Am J Roentgenol 179:1319–1322

    PubMed  Google Scholar 

  80. Coulden RA, Moss H, Graves MJ et al (2000) High resolution magnetic resonance imaging of atherosclerosis and the response to balloon angioplasty. Heart 83:188–191

    Article  PubMed  CAS  Google Scholar 

  81. Wyttenbach R, Gallino A, Alerci M et al (2004) Effects of percutaneous transluminal angioplasty and endovascular brachytherapy on vascular remodeling of human femoropopliteal artery by noninvasive magnetic resonance imaging. Circulation 31:1156–1161

    Article  Google Scholar 

  82. Skinner MP, Yuan C, Mitsumori L et al (1995) Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med 1:69–73

    Article  PubMed  Google Scholar 

  83. McConnell MV, Aikawa M, Maier S et al (1997) High resolution MRI detects rabbit atherosclerosis progression and regression in vivo. Circulation 96:I-191

    Google Scholar 

  84. Troiussant J-F, LaMuraglia GM, Southern JF et al (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938

    Google Scholar 

  85. Moss HA, Lomas DJ, Graves MJ et al (1997) High resolution MRI of the popliteal artery in normal subjects and patients with atheroma Heart 77(suppl 1):P14

    Google Scholar 

  86. Frayne R, Wehelie A, Yang Z et al (1999) MR evaluation of signal-emitting coatings. In: Proceedings of the International Society for Magnetic Resonance in Medicine 7th Scientific Meeting and Exhibition, Philadelphia, PA, p 580

  87. Rubin DL, Ratner AV, Young SW (1990) Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol 25:1325–1332

    Article  PubMed  CAS  Google Scholar 

  88. Dumoulin CL, Souza SP, Darrow RD (1993) Real time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415

    Article  PubMed  CAS  Google Scholar 

  89. Higgins CB, de Roos A (2006) MRI and CT of the cardiovascular system, 2nd edn. Philadelphia, PA, Lippincott, pp 576–592

    Google Scholar 

  90. Bick M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan F. Ettles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshminarayan, R., Simpson, J.O. & Ettles, D.F. Magnetic Resonance Angiography: Current Status in the Planning and Follow-Up of Endovascular Treatment in Lower-Limb Arterial Disease. Cardiovasc Intervent Radiol 32, 397–405 (2009). https://doi.org/10.1007/s00270-008-9467-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-008-9467-5

Keywords

Navigation