Skip to main content

Advertisement

Log in

Endovascular Interventions for Peripheral Artery Disease: A Contemporary Review

  • Peripheral Vascular Disease (S Kinlay, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Peripheral artery disease (PAD) is an increasingly prevalent but frequently underdiagnosed condition that can be associated with high rates of morbidity and mortality. While an initial noninvasive approach is the cornerstone of management, revascularization is often pursued for patients with treatment-refractory claudication or chronic limb-threatening ischemia (CLTI). In this review, we discuss the current state of endovascular interventions for PAD and explore the many new emerging technologies.

Recent Findings

The last decade has resulted in numerous advances in PAD interventions including the ongoing evolution of drug-coated devices, novel approaches to complex lesions, and contemporary evidence from large clinical trials for CLTI.

Summary

Advances in endovascular management have allowed for increasingly complex lesions to be tackled percutaneously. Future directions for the field include the continued evolution in device technology, continued development of state-of-the-art techniques to revascularization of complex lesions, and increased collaboration between a largely multidisciplinary field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lin J, Chen Y, Jiang N, Li Z, Xu S. Burden of peripheral artery disease and its attributable risk factors in 204 countries and territories from 1990 to 2019. Front Cardiovasc Med. 2022;9:1–13.

    Google Scholar 

  2. Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Heal [Internet]. 2019;7:e1020–30. Available from: https://doi.org/10.1016/S2214-109X(19)30255-4.

  3. Murray CJL, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013;369:448–57.

    Article  CAS  PubMed  Google Scholar 

  4. Mensah GA, Moran AE, Roth GA, Narula J. The global burden of cardiovascular diseases, 1990–2010. Glob Heart [Internet]. 2014;9:183–4. Available from: https://doi.org/10.1016/j.gheart.2014.01.008.

  5. • Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American Heart Association. Circulation. 2021;144:E171–91. Scientific statement is published by the American Heart Association for lower extremity peripheral artery disease.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kullo I, Rooke T. Peripheral artery disease. N Engl J Med. 2016;374:861–71.

    Article  CAS  PubMed  Google Scholar 

  7. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017.

  8. Bonaca MP, Creager MA. Pharmacological Treatment and current management of peripheral artery disease. Circ Res. 2015;116:1579–98.

    Article  CAS  PubMed  Google Scholar 

  9. Hageman D, de Wit MWAJM, van den Houten MML, Gommans LNM, Scheltinga MRM, Teijink JAW. Vascular quality of life questionnaire-6 before and after supervised exercise therapy in patients with intermittent claudication. Eur J Vasc Endovasc Surg [Internet]. 2022;63:457–63. Available from: https://doi.org/10.1016/j.ejvs.2021.10.031.

  10. Fokkenrood HJP, Bendermacher BLW, Lauret GJ, Willigendael EM, Prins MH, Teijink JAW. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2013.

  11. Saxon JT, Safley DM, Mena-Hurtado C, Heyligers J, Fitridge R, Shishehbor M, et al. Adherence to guideline-recommended therapy—including supervised exercise therapy referral—across peripheral artery disease specialty clinics: insights from the International PORTRAIT Registry. J Am Heart Assoc. 2020;9:1–9.

    Article  Google Scholar 

  12. Klein AJ, Jaff MR, Gray BH, Aronow HD, Bersin RM, Diaz-Sandoval LJ, et al. SCAI appropriate use criteria for peripheral arterial interventions: an update. Catheter Cardiovasc Interv. 2017;90:E90-110.

    Article  PubMed  Google Scholar 

  13. Farber A. Chronic limb-threatening ischemia. N Engl J Med. 2018;379:171–80.

  14. Thukkani AK, Kinlay S. Endovascular intervention for peripheral artery disease. Circ Res. 2015;116:1599–613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Raja A, Secemsky EA. Late mortality and paclitaxel-coated devices: has the controversy finally come to an end? J Soc Cardiovasc Angiogr Interv [Internet]. 2023;2:100981. Available from: https://doi.org/10.1016/j.jscai.2023.100981.

  16. Katsanos K, Spiliopoulos S, Kitrou P, Krokidis M, Karnabatidis D. Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018;7.

  17. Secemsky EA, Shen C, Schermerhorn M, Yeh RW. Longitudinal assessment of safety of femoropopliteal endovascular treatment with paclitaxel-coated devices among Medicare beneficiaries the SAFE-PAD study. JAMA Intern Med. 2021;181:1071–80.

    Article  PubMed  Google Scholar 

  18. Nordanstig J, James S, Andersson M, Andersson M, Danielsson P, Gillgren P, et al. Mortality with paclitaxel-coated devices in peripheral artery disease. N Engl J Med. 2020;383:2538–46.

    Article  CAS  PubMed  Google Scholar 

  19. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-Society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45:5–67.

    Article  Google Scholar 

  20. Silva JC. BEST-CLI versus BASIL-2 Trial: conflicting results? Port J Card Thorac Vasc Surg Editor. 2023;11–2.

  21. Bradbury AW, Adam DJ, Beard JD, Cleveland T, Forbes JF, Fowkes FGR, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925–34.

    Article  PubMed  Google Scholar 

  22. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FGR, Gillespie I, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: an intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg [Internet]. 2010;51:5S-17S. Available from: https://doi.org/10.1016/j.jvs.2010.01.073.

  23. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FGR, Gillespie I, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: analysis of amputation free and overall survival by treatment received. J Vasc Surg [Internet]. 2010;51:18S-31S. Available from: https://doi.org/10.1016/j.jvs.2010.01.074.

  24. •• Farber A, Menard MT, Conte MS, Kaufman JA, Powell RJ, Choudhry NK, et al. Surgery or endovascular therapy for chronic limb-threatening ischemia. N Engl J Med. 2022;387:2305–16. BEST-CLI is a recently published RCT which compared surgery to endovascular therapy for CLTI. This contemporary trial assists in defining the role of each intervention for patients with and without a viable saphenous vein conduit.

    Article  PubMed  Google Scholar 

  25. •• Bradbury AW, Moakes CA, Popplewell M, Meecham L, Bate GR, Kelly L, et al. A vein bypass first versus a best endovascular treatment first revascularisation strategy for patients with chronic limb threatening ischaemia who required an infra-popliteal, with or without an additional more proximal infra-inguinal revascularisation pr. Lancet [Internet]. 2023;401:1798–809. Available from: https://doi.org/10.1016/S0140-6736(23)00462-2. BASIL-2 is a recently published RCT which compared bypass surgery and endovascular therapy for patients with CLTI due to an infra-popliteal PAD. This study found improved amputation-free survival with endovascular therapy.

  26. Paisley MJ, Adkar S, Sheehan BM, Stern JR. Aortoiliac occlusive disease. Semin Vasc Surg [Internet]. 2022;35:162–71. Available from: https://doi.org/10.1053/j.semvascsurg.2022.04.005.

  27. Salem M, Hosny MS, Francia F, Sallam M, Saratzis A, Saha P, et al. Management of extensive aorto-iliac disease: a systematic review and meta-analysis of 9319 patients. Cardiovasc Intervent Radiol [Internet]. 2021;44:1518–35. Available from: https://doi.org/10.1007/s00270-021-02785-6.

  28. Tetteroo E, Van Der Graaf Y, Bosch JL, Van Engelen AD, Hunink MGM, Eikelboom BC, et al. Randomised comparison of primary stent placement versus primary angioplasty followed by selective stent placement in patients with iliac-artery occlusive disease. Lancet. 1998;351:1153–9.

    Article  CAS  PubMed  Google Scholar 

  29. Willemjin Klein;, Graaf; Y can der, Seegers; J. Dutch Iliac Stent Trial: Long-term results in patients randomized for primary or selective stent placement. Radiology. 2006;238:734–44.

  30. Goode SD, Cleveland TJ, Gaines PA. Randomized clinical trial of stents versus angioplasty for the treatment of iliac artery occlusions (STAG trial). Br J Surg. 2013;100:1148–53.

    Article  CAS  PubMed  Google Scholar 

  31. Ye W, Liu CW, Ricco JB, Mani K, Zeng R, Jiang J. Early and late outcomes of percutaneous treatment of TransAtlantic Inter-Society Consensus class C and D aorto-iliac lesions. J Vasc Surg. 2011;53:1728–37.

    Article  PubMed  Google Scholar 

  32. Kereiakes DJ, Virmani R, Hokama JY, Illindala U, Mena-Hurtado C, Holden A, et al. Principles of intravascular lithotripsy for calcific plaque modification. JACC Cardiovasc Interv. 2021;14:1275–92.

    Article  PubMed  Google Scholar 

  33. Dini CS, Tomberli B, Mattesini A, Ristalli F, Valente S, Stolcova M, et al. Intravascular lithotripsy for calcific coronary and peripheral artery stenoses. EuroIntervention. 2019;15:714–21.

    Article  PubMed  Google Scholar 

  34. • Mosarla RC, Armstrong E, Bitton-Faiwiszewski Y, Schneider PA, Secemsky EA. State-of-the-art endovascular therapies for the femoropopliteal segment: are we there yet? J Soc Cardiovasc Angiogr Interv [Internet]. 2022;1:100439. Available from: https://doi.org/10.1016/j.jscai.2022.100439. State-of-the-art review of modern endovascular therapies for peripheral artery disease within the femoropopliteal segment.

  35. Caradu C, Lakhlifi E, Colacchio EC, Midy D, Bérard X, Poirier M, et al. Systematic review and updated meta-analysis of the use of drug-coated balloon angioplasty versus plain old balloon angioplasty for femoropopliteal arterial disease. J Vasc Surg. 2019;70:981-995.e10.

    Article  PubMed  Google Scholar 

  36. Schillinger M, Sabeti S, Loewe C, Dick P, Amigh J, Mlekusch W, et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med. 2006;354:1879–88.

    Article  CAS  PubMed  Google Scholar 

  37. Müller-Hülsbeck S, Benko A, Soga Y, Fujihara M, Iida O, Babaev A, et al. Two-year efficacy and safety results from the IMPERIAL randomized study of the Eluvia polymer-coated drug-eluting stent and the Zilver PTX polymer-free drug-coated stent. Cardiovasc Intervent Radiol. 2021;44:368–75.

    Article  PubMed  Google Scholar 

  38. Gray WA, Keirse K, Soga Y, Benko A, Babaev A, Yokoi Y, et al. A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial. Lancet. 2018;392:1541–51.

    Article  CAS  PubMed  Google Scholar 

  39. Farhan S, Enzmann FK, Bjorkman P, Kamran H, Zhang Z, Sartori S, et al. Revascularization strategies for patients with femoropopliteal peripheral artery disease. J Am Coll Cardiol. 2023;81:358–70.

    Article  PubMed  Google Scholar 

  40. Butala NM, Chandra V, Beckman JA, Parikh SA, Lookstein R, Misra S, et al. Contextualizing the BEST-CLI trial results in clinical practice. J Soc Cardiovasc Angiogr Interv [Internet]. 2023;2:101036. Available from: https://doi.org/10.1016/j.jscai.2023.101036.

  41. Abu Dabrh AM, Steffen MW, Asi N, Undavalli C, Wang Z, Elamin MB, et al. Bypass surgery versus endovascular interventions in severe or critical limb ischemia. J Vasc Surg [Internet]. 2016;63:244–253.e11. Available from: https://doi.org/10.1016/j.jvs.2015.07.068.

  42. Armstrong EJ, Bishu K, Waldo SW. Endovascular treatment of infrapopliteal peripheral artery disease. Curr Cardiol Rep. 2016;18:1–7.

    Article  Google Scholar 

  43. Fernandez N, McEnaney R, Marone LK, Rhee RY, Leers S, Makaroun M, et al. Multilevel versus isolated endovascular tibial interventions for critical limb ischemia. J Vasc Surg [Internet]. 2011;54:722–9. Available from: https://doi.org/10.1016/j.jvs.2011.03.232.

  44. Söderström MI, Arvela EM, Korhonen M, Halmesmäki KH, Albäck AN, Biancari F, et al. Infrapopliteal percutaneous transluminal angioplasty versus bypass surgery as first-line strategies in critical leg ischemia: a propensity score analysis. Ann Surg. 2010;252:765–72.

    Article  PubMed  Google Scholar 

  45. Scheinert D, Katsanos K, Zeller T, Koppensteiner R, Commeau P, Bosiers M, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the Achilles trial. J Am Coll Cardiol. 2012;60:2290–5.

    Article  PubMed  Google Scholar 

  46. Spreen MI, Martens JM, Hansen BE, Knippenberg B, Verhey E, Van Dijk LC, et al. Percutaneous transluminal angioplasty and drug-eluting stents for infrapopliteal lesions in critical limb ischemia (PADI) trial. Circ Cardiovasc Interv. 2016;9:1–10.

    Article  Google Scholar 

  47. Fusaro M, Cassese S, Ndrepepa G, Tepe G, King L, Ott I, et al. Drug-eluting stents for revascularization of infrapopliteal arteries: updated meta-analysis of randomized trials. JACC Cardiovasc Interv [Internet]. 2013;6:1284–93. Available from: https://doi.org/10.1016/j.jcin.2013.08.007.

  48. Liistro F, Angioli P, Ventoruzzo G, Ducci K, Reccia MR, Ricci L, et al. Randomized controlled trial of Acotec drug-eluting balloon versus plain balloon for below-the-knee angioplasty. JACC Cardiovasc Interv [Internet]. 2020;13:2277–86. Available from: https://doi.org/10.1016/j.jcin.2020.06.045.

  49. Liistro F, Porto I, Angioli P, Grotti S, Ricci L, Ducci K, et al. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation. 2013;128:615–21.

    Article  CAS  PubMed  Google Scholar 

  50. Ipema J, Huizing E, Schreve MA, de Vries JPPM, Ünlü Ç. Editor’s Choice – Drug coated balloon angioplasty vs. standard percutaneous transluminal angioplasty in below the knee peripheral arterial disease: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2020;59:265–75.

  51. Kum S, Tan YK, Schreve MA, Ferraresi R, Varcoe RL, Schmidt A, et al. Midterm outcomes from a pilot study of percutaneous deep vein arterialization for the treatment of no-option critical limb ischemia. J Endovasc Ther. 2017;24:619–26.

    Article  PubMed  Google Scholar 

  52. Schmidt A, Schreve MA, Huizing E, Del Giudice C, Branzan D, Ünlü Ç, et al. Midterm outcomes of percutaneous deep venous arterialization with a dedicated system for patients with no-option chronic limb-threatening ischemia: the ALPS multicenter study. J Endovasc Ther [Internet]. 2020;27:658–65. Available from: https://doi.org/10.1177/1526602820922179.

  53. • Clair DG, Mustapha JA, Shishehbor MH, Schneider PA, Henao S, Bernardo NN, et al. PROMISE I: early feasibility study of the LimFlow System for percutaneous deep vein arterialization in no-option chronic limb-threatening ischemia: 12-month results. J Vasc Surg [Internet]. 2021;74:1626–35. Available from: https://doi.org/10.1016/j.jvs.2021.04.057. PROMISE I demonstrated early safety and efficacy of the LimFlow pDVA percutaneous deep vein arterialization platform in patients with no option CLTI.

  54. Shishehbor MH, Powell RJ, Montero-Baker MF, Dua A, Martínez-Trabal JL, Bunte MC, et al. Transcatheter arterialization of deep veins in chronic limb-threatening ischemia. N Engl J Med. 2023;388:1171–80.

    Article  CAS  PubMed  Google Scholar 

  55. • Krievins DK, Halena G, Scheinert D, Savlovskis J, Szopiński P, Krämer A, et al. One-year results from the DETOUR I trial of the PQ Bypass DETOUR System for percutaneous femoropopliteal bypass. J Vasc Surg. 2020;72:1648-1658.e2. The DETOUR I trial found that the PQ Bypass DETOUR percutaneous femoropopliteal bypass platform was safe and efficacious for patients with long segment femoropopliteal disease at one year of follow-up.

    Article  PubMed  Google Scholar 

  56. Vanderland M, Ooi YS, Gray WA. Device profile of the Tack Endovascular System® for the treatment of peripheral arterial disease: overview of safety and efficacy. Expert Rev Med Devices [Internet]. 2021;18:717–26. Available from: https://doi.org/10.1080/17434440.2021.1947243.

  57. Kobayashi N, Hirano K, Yamawaki M, Araki M, Sakai T, Sakamoto Y, et al. Simple classification and clinical outcomes of angiographic dissection after balloon angioplasty for femoropopliteal disease. J Vasc Surg [Internet]. 2018;67:1151–8. Available from: https://doi.org/10.1016/j.jvs.2017.08.092.

  58. Gasper WJ, Runge SJ, Owens CD. Management of infrapopliteal peripheral arterial occlusive disease. Curr Treat Options Cardiovasc Med. 2012;14:136–48.

    Article  PubMed  Google Scholar 

  59. Horie K, Tanaka A, Taguri M, Kato S, Inoue N. Impact of prolonged inflation times during plain balloon angioplasty on angiographic dissection in femoropopliteal lesions. J Endovasc Ther. 2018;25:683–91.

    Article  PubMed  Google Scholar 

  60. Siah MC, Babb J, Schneider PA. How i do it: optimizing angioplasty utilizing the tack endovascular system in the management of CLTI. J Vasc Surg Cases, Innov Tech [Internet]. 2023;101206. Available from: https://doi.org/10.1016/j.jvscit.2023.101206.

  61. Brodmann M, Wissgott C, Brechtel K, Nikol S, Zeller T, Lichtenberg M, et al. Optimized drug-coated balloon angioplasty of the superficial femoral and proximal popliteal arteries using the Tack Endovascular System: TOBA III 12-month results. J Vasc Surg [Internet]. 2020;72:1636–1647.e1. Available from: https://doi.org/10.1016/j.jvs.2020.01.078.

  62. Gray WA, Cardenas JA, Brodmann M, Werner M, Bernardo NI, George JC, et al. Treating post-angioplasty dissection in the femoropopliteal arteries using the tack endovascular system: 12-month results from the TOBA II Study. JACC Cardiovasc Interv [Internet]. 2019;12:2375–84. Available from: https://doi.org/10.1016/j.jcin.2019.08.005.

  63. Geraghty PJ, Adams G, Schmidt A, Cardenas J, Lichtenberg M, Wissgott C, et al. Six-month pivotal results of tack optimized balloon angioplasty using the Tack Endovascular System in below-the-knee arteries. J Vasc Surg [Internet]. 2021;73:918–929.e5. Available from: https://doi.org/10.1016/j.jvs.2020.08.135.

  64. Darmoch F, Alraies MC, Al-Khadra Y, Pacha HM, Pinto DS, Osborn EA. Intravascular ultrasound imaging–guided versus coronary angiography–guided percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9.

  65. Fazel R, Yeh RW, Cohen D, Rao SV, Song Y, Secemsky EA. Intravascular imaging during percutaneous coronary intervention: temporal trends and clinical outcomes in the USA. Eur Heart J. 2023;00:1–11.

    Google Scholar 

  66. Divakaran S, Parikh SA, Hawkins BM, Chen S, Song Y, Banerjee S, et al. Temporal trends, practice variation, and associated outcomes with IVUS Use during peripheral arterial intervention. JACC Cardiovasc Interv. 2022;15:2080–90.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Nicolas W. Shammas ; James T. Torey; W. John Shammas; Susan Jones-Miller; Gail A. Shammas. Intravascular ultrasound assessment and correlation with angiographic findings demonstrating femoropopliteal arterial dissections post atherectomy: results from the iDissection Study. J Invasive Cardiol. 2018;30:240–4.

  68. Allan RB, Puckridge PJ, Spark JI, Delaney CL. The Impact of intravascular ultrasound on femoropopliteal artery endovascular interventions: a randomized controlled trial. JACC Cardiovasc Interv. 2022;15:536–46.

    Article  PubMed  Google Scholar 

  69. • Secemsky EA, Mosarla RC, Rosenfield K, Kohi M, Lichtenberg M, Meissner M, et al. Appropriate use of intravascular ultrasound during arterial and venous lower extremity interventions. JACC Cardiovasc Interv. 2022;15:1558–68. The first published consensus opinion for intravascular ultrasound for venous and arterial peripheral interventions.

    Article  PubMed  Google Scholar 

  70. Armstrong EJ, Soukas PA, Shammas N, Chamberlain J, Pop A, Adams G, et al. Intravascular lithotripsy for treatment of calcified, stenotic iliac arteries: a cohort analysis from the Disrupt PAD III Study. Cardiovasc Revascularization Med [Internet]. 2020;21:1262–8. Available from: https://doi.org/10.1016/j.carrev.2020.02.026.

  71. Beckman JA, Schneider PA, Conte MS. Advances in revascularization for peripheral artery disease: revascularization in PAD. Circ Res. 2021;128:1885–912.

    Article  CAS  PubMed  Google Scholar 

  72. Kawaguchi R, Tsurugaya H, Hoshizaki H, Toyama T, Oshima S, Taniguchi K. Impact of lesion calcification on clinical and angiographic outcome after sirolimus-eluting stent implantation in real-world patients. Cardiovasc Revascularization Med. 2008;9:2–8.

    Article  Google Scholar 

  73. Babaev AA, Zavlunova S, Attubato MJ, Martinsen BJ, Mintz GS, Maehara A. Orbital atherectomy plaque modification assessment of the femoropopliteal artery via intravascular ultrasound (TRUTH Study). Vasc Endovascular Surg. 2015;49:188–94.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Brodmann M, Werner M, Holden A, Tepe G, Scheinert D, Schwindt A, et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: results of Disrupt PAD II. Catheter Cardiovasc Interv. 2019;93:335–42.

    Article  PubMed  Google Scholar 

  75. • Tepe G, Brodmann M, Werner M, Bachinsky W, Holden A, Zeller T, et al. Intravascular lithotripsy for peripheral artery calcification: 30-day outcomes from the randomized Disrupt PAD III Trial. JACC Cardiovasc Interv. 2021;14:1352–61. The Disrupt PAD III trial compared IVL to PTA prior to management with a DCB or stenting for calcified femoropopliteal lesions and found IVL to be an effective strategy.

    Article  PubMed  Google Scholar 

  76. Tepe G, Brodmann M, Bachinsky W, Holden A, Zeller T, Mangalmurti S, et al. Intravascular lithotripsy for peripheral artery calcification: mid-term outcomes from the randomized Disrupt PAD III Trial. J Soc Cardiovasc Angiogr Interv [Internet]. 2022;1:100341. Available from: https://doi.org/10.1016/j.jscai.2022.100341.

  77. Kassimis G, Spiliopoulos S, Katsanos K, Tsetis D, Krokidis ME. Bioresorbable scaffolds in peripheral arterial disease. Expert Rev Cardiovasc Ther. 2014;12:443–50.

    Article  CAS  PubMed  Google Scholar 

  78. van Haelst STW, Peeters Weem SMO, Moll FL, de Borst GJ. Current status and future perspectives of bioresorbable stents in peripheral arterial disease. J Vasc Surg [Internet]. 2016;64:1151–1159.e1. Available from: https://doi.org/10.1016/j.jvs.2016.05.044.

  79. Lammer J, Bosiers M, Deloose K, Schmidt A, Zeller T, Wolf F, et al. Bioresorbable everolimus-eluting vascular scaffold for patients with peripheral artery disease (ESPRIT I): 2-year clinical and imaging results. JACC Cardiovasc Interv [Internet]. 2016;9:1178–87. Available from: https://doi.org/10.1016/j.jcin.2016.02.051.

  80. Varcoe RL, Parikh SA, DeRubertis BG, Jones-McMeans JM, Teraphongphom NT, Wang J, et al. Evaluation of an infrapopliteal drug-eluting resorbable scaffold: design methodology for the LIFE-BTK randomized controlled trial. J Soc Cardiovasc Angiogr Interv [Internet]. 2023;2:100964. Available from: https://doi.org/10.1016/j.jscai.2023.100964.

  81. Feiring AJ, Krahn M, Nelson L, Wesolowski A, Eastwood D, Szabo A. Preventing leg amputations in critical limb ischemia with below-the-knee drug-eluting stents. The PaRADISE (PReventing Amputations using Drug eluting StEnts) Trial. J Am Coll Cardiol. 2010;55:1580–9.

  82. Bosiers M, Scheinert D, Peeters P, Torsello G, Zeller T, Deloose K, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg [Internet]. 2012;55:390–8. Available from: https://doi.org/10.1016/j.jvs.2011.07.099.

  83. Rastan A, Brechtel K, Krankenberg H, Zahorsky R, Tepe G, Noory E, et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents: long-term results from a randomized trial. J Am Coll Cardiol [Internet]. 2012;60:587–91. Available from: https://doi.org/10.1016/j.jacc.2012.04.035.

  84. Patel A, Irani FG, Pua U, Tay KH, Chong TT, Leong S, et al. Randomized controlled trial comparing drug-coated balloon angioplasty versus conventional balloon angioplasty for treating below-the-knee arteries in critical limb ischemia: the SINGA-PACLI trial. Radiology. 2021;300:715–24.

    Article  PubMed  Google Scholar 

  85. Zeller T, Beschorner U, Pilger E, Bosiers M, Deloose K, Peeters P, et al. Paclitaxel-coated balloon in infrapopliteal arteries: 12-month results from the BIOLUX P-II randomized trial (BIOTRONIK’S-First in Man study of the Passeo-18 LUX drug releasing PTA balloon catheter vs. the uncoated Passeo-18 PTA balloon catheter in subject. JACC Cardiovasc Interv. 2015;8:1614–22.

  86. Zeller T, Baumgartner I, Scheinert D, Brodmann M, Bosiers M, Micari A, et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-month results from the IN.PACT deep randomized trial. J Am Coll Cardiol. 2014;64:1568–76.

  87. Siablis D, Kitrou PM, Spiliopoulos S, Katsanos K, Karnabatidis D. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial. JACC Cardiovasc Interv. 2014;7:1048–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Secemsky.

Ethics declarations

Conflict of Interest

Eric A. Secemsky reports personal fees from Abbott, BD, Boston Scientific, Cook, Cordis, InfraRedx, Medtronic, Philips, RapidAI, Shockwave, and VentureMed, outside the submitted work. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, N.W., Mosarla, R.C. & Secemsky, E.A. Endovascular Interventions for Peripheral Artery Disease: A Contemporary Review. Curr Cardiol Rep 25, 1611–1622 (2023). https://doi.org/10.1007/s11886-023-01973-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01973-9

Keywords

Navigation