Skip to main content

Advertisement

Log in

FDG-MicroPET and Diffusion-Weighted MR Image Evaluation of Early Changes After Radiofrequency Ablation in Implanted VX2 Tumors in Rabbits

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the early changes after radiofrequency ablation (RFA) in VX2 rabbit tumors implanted into the back muscles by diffusion-weighted magnetic resonance (MR) imaging and 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET). Percutaneous CT-guided RFA was conducted in seven rabbits with implanted VX2 tumors. VX2 tumors on the other side were untreated and served as the control. MR imaging was performed with a clinical 1.5-T instrument 2 days after RFA, and FDG-PET, using a high-resolution PET scanner for small animals, was obtained 3 days after the procedure. The mean apparent diffusion coefficient (ADC) values and radioactivity count of untreated and ablated tumors were calculated. Untreated VX2 tumors showed hyperintensity on T1-, T2-, and diffusion-weighted MR images, ring-enhanced on contrast-enhanced T1-weighted imaging, and ring-shaped FDG accumulation on FDG-PET. Ablated VX2 tumors showed slight hyperintensity on T1-, T2-, and diffusion-weighed images, slight enhancement on contrast-enhanced T1-weighted images, and low accumulation on FDG-PET. The ADC value of ablated VX2 tumors (1.52 ± 0.24 × 10−3 mm2/s) was significantly higher than that of untreated tumors (1.09 ± 0.12 × 10−3; p < 0.05). The tumor/muscle ratio of ablated tumors (0.5 ± 0.3) was significantly lower than that of untreated tumors (11.6 ± 3.2; p < 0.05). Histopathological examination confirmed the lack of viable tumor cells in the ablated lesions. The results indicate that both ADC value and FDG-PET are potentially useful markers for monitoring the early effects of RFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gillams AR (2005) Image guided tumour ablation. Cancer Imaging 5:103–109

    Article  PubMed  CAS  Google Scholar 

  2. Ni Y, Mulier S, Miao Y, Michel L, Marchal G (2005) A review of the general aspects of radiofrequency ablation. Abdom Imaging 30:381–400

    Article  PubMed  CAS  Google Scholar 

  3. Dupuy DE, Goldberg SN (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities. Part 2. J Vasc Interv Radiol 12:1135–1148

    Article  PubMed  CAS  Google Scholar 

  4. Gazelle GS, Goldberg SN, Solbiati L et al (2000) Tumor ablation with radiofrequency energy. Radiology 217:633–646

    PubMed  CAS  Google Scholar 

  5. Rose SC, Thistlethwaite PA, Sewell PE et al (2006) Lung cancer and radiofrequency ablation. J Vasc Interv Radiol 17:927–951

    Article  PubMed  Google Scholar 

  6. Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ (1999) Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1:113–117

    Article  PubMed  CAS  Google Scholar 

  7. Theilmann RJ, Borders R, Trouard TP et al (2004) Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 6:831–837

    Article  PubMed  Google Scholar 

  8. Jennings D, Hatton BN, Guo J et al (2002) Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia 4:255–262

    Article  PubMed  CAS  Google Scholar 

  9. Roth Y, Tichler T, Kostenich G et al (2004) High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology 232:685–692

    Article  PubMed  Google Scholar 

  10. Tomura N, Narita K, Izumi J et al (2006) Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors: possible prediction of treatment response. J Comput Assist Tomogr 30:496–500

    Article  PubMed  Google Scholar 

  11. Thoeny HC, De Keyzer F, Chen F et al (2005) Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology 234:756–764

    Article  PubMed  Google Scholar 

  12. Geschwind JF, Artemov D, Abraham S et al (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol 11:1245–1255

    Article  PubMed  CAS  Google Scholar 

  13. Baur A, Huber A, Arbogast S et al (2001) Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Radiol 11:828–833

    Article  PubMed  CAS  Google Scholar 

  14. Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45:208–213

    Article  PubMed  Google Scholar 

  15. Deng J, Rhee TK, Sato KT et al (2006) In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla. Invest Radiol 41:410–414

    Article  PubMed  Google Scholar 

  16. van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL (2002) Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 15:302–307

    Article  PubMed  Google Scholar 

  17. Einarsdottir H, Karlsson M, Wejde J, Bauer HC (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14:959–963

    Article  PubMed  Google Scholar 

  18. Baur A, Reiser MF (2000) Diffusion-weighted imaging of the musculoskeletal system in humans. Skel Radiol 29:555–562

    Article  CAS  Google Scholar 

  19. Dietrich O, Raya JG, Sommer J, Deimling M, Reiser MF, Baur-Melnyk A (2005) A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. Eur Radiol 15:772–783

    Article  PubMed  Google Scholar 

  20. Giannopoulou C (2003) The role of SPET and PET monitoring tumour response to therapy. Eur J Nucl Med 30:1173–1200

    Article  Google Scholar 

  21. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H (2003) FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 28:192–197

    Article  PubMed  Google Scholar 

  22. Oya N, Nagata Y, Tamaki N et al (1996) FDG-PET evaluation of therapeutic effects on VX2 liver tumor. J Nucl Med 37:296–302

    PubMed  CAS  Google Scholar 

  23. Okuma T, Okamura T, Matsuoka T et al (2006) Fluorine-18-fluorodeoxyglucose positron emission tomography for assessment of patients with unresectable recurrent or metastatic lung cancers after CT-guided radiofrequency ablation: preliminary results. Ann Nucl Med 20:115–121

    Article  PubMed  Google Scholar 

  24. Okuma T, Matsuoka T, Okamura T et al (2006) 18F-FDG small-animal PET for monitoring the therapeutic effect of CT-guided radiofrequency ablation on implanted VX2 lung tumors in rabbits. J Nucl Med 47:1351–1358

    PubMed  Google Scholar 

  25. Kondo S, Hosono MN, Wada Y et al (2004) Use of FDG-microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer. Ann Nucl Med 18:51–57

    Article  PubMed  Google Scholar 

  26. Ishii K, Hosono MN, Wada Y et al (2006) Usefulness of FDG-microPET for early evaluation of therapeutic effects on VX2 rabbit carcinoma. Ann Nucl Med 20:123–130

    Article  PubMed  Google Scholar 

  27. Oyama Y, Nakamura K, Matsuoka T et al (2005) Radiofrequency ablated lesion in the normal porcine lung: long-term follow-up with MRI and pathology. CardioVasc Interv Radiol 28:346–353

    Article  Google Scholar 

  28. Yuan YH, Xiao EH, Xiang J et al (2005) MR diffusion-weighted imaging of rabbit liver VX–2 tumor. World J Gastroenterol 11:3070–3074

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in Aid for Scientific Research (KAKENHI) 19790892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Ohira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohira, T., Okuma, T., Matsuoka, T. et al. FDG-MicroPET and Diffusion-Weighted MR Image Evaluation of Early Changes After Radiofrequency Ablation in Implanted VX2 Tumors in Rabbits. Cardiovasc Intervent Radiol 32, 114–120 (2009). https://doi.org/10.1007/s00270-008-9394-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-008-9394-5

Keywords

Navigation