Skip to main content

Advertisement

Log in

High-temperature Raman and FTIR study of aragonite-group carbonates

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In situ high-temperature Raman and Fourier transform infrared spectra were measured for aragonite, strontianite, cerussite, and witherite at ambient pressure. The orthorhombic to trigonal phase transitions were observed by the vibrational spectra for aragonite and witherite, at the temperatures of 773 and 1150 K, respectively. The isobaric mode Grüneisen parameters (γiP), derived from this study, are compared with the isothermal mode Grüneisen parameters (γiT), calculated from the reported high-pressure measurements. The γiP and γiT parameters range from 0.46 to 3.43 for the lattice vibrational modes, whereas they are smaller than 0.4 for the internal vibrational modes of the CO3 group, consistent with the CO3 group serving as rigid bodies in the crystal structure. At high temperatures, the γiP parameters for in-plane and out-of-plane bending modes are systematically smaller than those for asymmetric and symmetric stretching modes of CO3, implying that the O–C–O angles are even less sensitive to temperature than the C–O bond lengths. The intrinsic anharmonicities are also evaluated. The averaged anharmonic modes (ai_avg) are positive for cerussite, but negative for aragonite, strontianite and witherite. The intrinsic anharmonicity has quite different contributions to the equation of state and thermodynamic properties of cerussite, compared with other carbonate minerals, at the high temperatures and high pressures of mantle conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen FA, Brečević L (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand 45:1018–1024

    Article  Google Scholar 

  • Andersson MP, Hem CP, Schultz LN, Nielsen JW, Pedersen CS, Sand KK, Okhrimenko DV, Johnsson A, Stipp SL (2014) Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths—do we observe the mineral surface? J Phys Chem A 118:10720–10729

    Article  Google Scholar 

  • Antao SM, Hassan I (2007) BaCO3: high-temperature crystal structures and the Pmcn → R3m phase transition at 811 °C. Phys Chem Miner 34:573–580

    Article  Google Scholar 

  • Antao SM, Hassan I (2009) The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can Mineral 47:1245–1255

    Article  Google Scholar 

  • Antao SM, Hassan I (2010) Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffraction data. Can Mineral 48:1225–1236

    Article  Google Scholar 

  • Arapan S, Ahuja R (2010) High-pressure phase transformations in carbonates. Phys Rev B 82:184115

    Article  Google Scholar 

  • Biedermann N, Winkler B, Speziale S, Reichmann HJ, Koch-Müller M (2017) Single-crystal elasticity of SrCO3 by Brillouin spectroscopy. High Press Res 37:181–192

    Article  Google Scholar 

  • Biellmann C, Gillet P (1992) High-pressure and high-temperature behaviour of calcite, aragonite and dolomite: a Raman spectroscopic study. Eur J Mineral 4:389–393

    Article  Google Scholar 

  • Bissengaliyeva MR, Gogol DB, Taimassova ST, Bekturganov NS (2012) The heat capacity and thermodynamic functions of cerussite. J Chem Thermodyn 47:197–202

    Article  Google Scholar 

  • Brenker F, Vincze L, Vekemans B, Nasdala L, Stachel T, Vollmer C, Kersten M, Somogyi A, Adams F, Joswig W (2005) Detection of a Ca-rich lithology in the Earth’s deep (> 300 km) convecting mantle. Earth Planet Sci Lett 236:579–587

    Article  Google Scholar 

  • Carteret C, Dandeu A, Moussaoui S, Muhr H, Humbert B, Plasari E (2009) Polymorphism studied by lattice phonon Raman spectroscopy and statistical mixture analysis method. Application to calcium carbonate polymorphs during batch crystallization. Cryst Growth Des 9:807–812

    Article  Google Scholar 

  • Caspi E, Pokroy B, Lee P, Quintana J, Zolotoyabko E (2005) On the structure of aragonite. Acta Crystallogr B16:129–132

    Article  Google Scholar 

  • Catalli K, Santillán J, Williams Q (2005) A high pressure infrared spectroscopic study of PbCO3-cerussite: constraints on the structure of the post-aragonite phase. Phys Chem Miner 32:412–417

    Article  Google Scholar 

  • Chaney J, Santillán JD, Knittle E, Williams Q (2015) A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures. Phys Chem Miner 42:83–93

    Article  Google Scholar 

  • Couture L (1947) Etude des spectres de vibrations de monocristaux ioniques. Ann Phys N Y 12:5–94

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • De Villiers RJP (1971) The crystal structures of aragonite, strontianite, and witherite. Am Mineral 56:758–767

    Google Scholar 

  • Dorogokupets PI, Oganov AR (2004) Intrinsic anharmonicity in equations of state of solids and minerals. Dokl Earth Sci 395:238–241

    Google Scholar 

  • Fujimori H, Komatsu H, Ioku K, Goto S, Yoshimura M (2002) Anharmonic lattice mode of Ca2SiO4: ultraviolet laser Raman spectroscopy at high temperatures. Phys Rev B 66:064306

    Article  Google Scholar 

  • Gao J, Wu X, Qin S, Li YC (2016) Pressure-induced phase transformations of PbCO3 by X-ray diffraction and Raman spectroscopy. High Press Res 36:1–15

    Article  Google Scholar 

  • Gillet P, Guyot F, Malezieux J-M (1989) High-pressure, high-temperature Raman spectroscopy of Ca2GeO4 (olivine form): some insights on anharmonicity. Phys Earth Planet Inter 58:141–154

    Article  Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18

    Google Scholar 

  • Grüneisen E (1912) Theorie des festen Zustandes einatomiger Elemente. Ann Phys Berl 344:257–306

    Article  Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37:892–899

    Article  Google Scholar 

  • Gurevich VM, Gavrichev KS, Gorbunov VE, Danilova TV, Golushina LN (2001a) Low-temperature heat capacity of strontianite SrCO3(c). Geochem Int 39:676–682

    Google Scholar 

  • Gurevich VM, Gavrichev KS, Gorbunov VE, Danilova TV, Golushina LN, Khodakovskii IL (2001b) Low-temperature heat capacity of witherite BaCO3(c). Geochem Int 39:1007–1014

    Google Scholar 

  • Holl CM, Smyth JR, Laustsen HMS, Jacobsen SD, Downs RT (2000) Compression of witherite to 8 Gpa and the crystal structure of BaCO3 II. Phys Chem Miner 27:467–473

    Article  Google Scholar 

  • Huang CK, Kerr PF (1960) Infrared study of carbonate minerals. Am Mineral 45:311–324

    Google Scholar 

  • James AM, Lord MP (1992) MacMillan’s chemical and physical data. Macmillan Press, Basingstoke

    Google Scholar 

  • Keppler H, Wiedenbeck M, Shcheka SS (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature 424:414–416

    Article  Google Scholar 

  • Kraft S, Knittle E, Williams Q (1991) Carbonate stability in the Earth’s mantle: a vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. J Geophys Res 96:17997–18009

    Article  Google Scholar 

  • Krishnamurti D (1960) The Raman spectra of aragonite, strontianite and witherite. Proc Natl Acad Sci India A 51:285–295

    Article  Google Scholar 

  • Li Y, Zou Y, Chen T, Wang X, Qi X, Chen H, Du J, Li B (2015) P-V-T equation of state and high-pressure behavior of CaCO3 aragonite. Am Mineral 100:2323–2329

    Article  Google Scholar 

  • Lin CC, Liu JG (1997a) High-pressure Raman spectroscopic study of post-aragonite phase transition in witherite (BaCO3). Eur J Mineral 9:785–792

    Article  Google Scholar 

  • Lin CC, Liu JG (1997b) High pressure phase transformations in aragonite-type carbonates. Phys Chem Miner 24:149–157

    Article  Google Scholar 

  • Lin CC, Liu LG (1997c) Post-aragonite phase transitions in strontianite and cerussite—a high-pressure Raman spectroscopic study. J Phys Chem Solids 58:977–987

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Gavryushkin PN, Bekhtenova AE, Dorogokupets PI, Danilov BS, Higo Y, Akilbekov AT, Inerbaev TM (2017) P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: in situ X-ray diffraction study. Phys Earth Planet Inter 265:82–91

    Article  Google Scholar 

  • Liu LG, Mernagh TP (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral 75:801–806

    Google Scholar 

  • Liu LG, Chen CC, Lin CC (2005) Elasticity of single-crystal aragonite by Brillouin spectroscopy. Phys Chem Miner 32:97–102

    Article  Google Scholar 

  • Liu Q, Jin ZM, Zhang JF (2009) An experimental study of dehydration melting of phengite-bearing eclogite at 1.5–3.0 GPa. Chin Sci Bull 54:1455–1464

    Google Scholar 

  • Lobanov SS, Dong X, Martirosyan NS, Samtsevich AI, Stevanovic V, Gavryushkin PN, Litasov KD, Greenberg E, Prakapenka VB, Oganov AR, Goncharov AF (2017) Raman spectroscopy and X-ray diffraction of sp 3 CaCO3 at lower mantle pressures. Phys Rev B 96:104101

    Article  Google Scholar 

  • Marcondes ML, Justo JF, Assali LVC (2016) Carbonates at high pressures: possible carriers for deep carbon reservoirs in the Earth’s lower mantle. Phys Rev B 94:104112

    Article  Google Scholar 

  • Martens WN, Rintoul L, Kloprogge JT, Frost RL (2004) Single crystal Raman spectroscopy of cerussite. Am Mineral 89:352–358

    Article  Google Scholar 

  • Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624

    Article  Google Scholar 

  • Minch R, Dubrovinsky L, Kurnosov A, Ehm L, Knorr K, Depmeier W (2010a) Raman spectroscopic study of PbCO3 at high pressures and temperatures. Phys Chem Miner 37:45–56

    Article  Google Scholar 

  • Minch R, Peters L, Ehm L, Knorr K, Siidra OI, Prakapenka V, Dera P, Depmeier W (2010b) Evidence for the existence of a PbCO3-II phase from high pressure X-ray measurements. Z Kristallogr 225:146–152

    Article  Google Scholar 

  • Nie S, Liu Y, Liu Q, Wang M, Wang H (2017) Phase transitions and thermal expansion of BaCO3 and SrCO3 up to 1413 K. Eur J Mineral 29:433–443

    Article  Google Scholar 

  • Oganov AR, Dorogokupets PI (2004) Intrinsic anharmonicity in equations of state and thermodynamics of solids. J Phys Condens Mat 16:1351–1360

    Article  Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103

    Article  Google Scholar 

  • Ono S (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249

    Article  Google Scholar 

  • Palaich SEM, Heffern RA, Hanfland M, Lausi A, Kavner A, Manning CE, Merlini M (2016) High-pressure compressibility and thermal expansion of aragonite. Am Mineral 101:1651–1658

    Article  Google Scholar 

  • Pokroy B, Fieramosca J, Von Breele R, Fitch A, Caspi E, Zolotoyabko E (2007) Atomic structure of biogenic aragonite. Chem Mater 19:3244–3251

    Article  Google Scholar 

  • Ross NL, Reeder RJ (1992) High-pressure structural study of dolomite and ankerite. Am Mineral 77:412–421

    Google Scholar 

  • Rutt HN, Nicola JH (1974) Raman spectra of carbonates of calcite structure. J Phys C Solis State Phys 7:4522–4528

    Article  Google Scholar 

  • Sánchez-Pastor N, Oehlerich M, Astilleros JM, Kaliwoda M, Mayr CC, Fernández-Díaz L, Schmahl WW (2016) Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence. Geochim Cosmochim Acta 175:271–281

    Article  Google Scholar 

  • Sanchez-Valle C, Ghosh S, Rosa A (2011) Sound velocities of ferromagnesian carbonates and seismic detection of carbonates in eclogites and the mantle. Geophys Res Lett 38:L24315

    Article  Google Scholar 

  • Santillán J, Williams Q (2004) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am Mineral 89:1348–1352

    Article  Google Scholar 

  • Siidra OI, Krivovichev SV, Filatov SK (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Z Kristallogr-Cryst Mat 223:114–125

    Google Scholar 

  • Smith D, Lawler KV, Martinez-Canales M, Daykin AW, Fussell Z, Smith GA, Childs C, Smith JS, Pickard CJ, Salamat A (2018) Postaragonite phases of CaCO3 at lower mantle pressures. Phys Rev Materials 2:013605

    Article  Google Scholar 

  • Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. Rev Mineral Geochem 11:145–190

    Google Scholar 

  • Sui Z, Wu J, Wang X, Dai R, Wang Z, Zheng X, Zhang Z (2016) Cyclic phase transition from hexagonal to orthorhombic then back to hexagonal of EuF3 while loading uniaxial pressure and under high temperature. J Phys Chem C 120:18780–18787

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi y, SakuRai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002

    Article  Google Scholar 

  • Ungureanu CG, Prencipe M, Cossio R (2010) Ab initio quantum-mechanical calculation of CaCO3 aragonite at high pressure: thermodynamic properties and comparison with experimental data. Eur J Mineral 22:693–701

    Article  Google Scholar 

  • Wang M, Liu Q, Nie S, Li B, Wu Y, Gao J, Wei X, Wu X (2015) High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3 and BaCO3. Phys Chem Miner 42:517–527

    Article  Google Scholar 

  • Wehrmeister U, Soldati AL, Jacob DE, Häger T, Hofmeister W (2010) Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study. J Raman Spectrosc 41:193–201

    Google Scholar 

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society of Great Britain and Ireland, London, pp 227–284

    Chapter  Google Scholar 

  • Yang Y, Wang Z, Smyth JR, Liu J, Xia Q (2015) Water effects on the anharmonic properties of forsterite. Am Mineral 100:2185–2190

    Article  Google Scholar 

  • Ye Y, Smyth JR, Boni P (2012) Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction. Am Mineral 97:707–712

    Article  Google Scholar 

  • Zhang YF, Liu J, Qin ZX, Lin CL, Xiong L, Li R, Bai LG (2013) A high-pressure study of PbCO3 by XRD and Raman spectroscopy. Chin Phys C 37:038001

    Article  Google Scholar 

  • Zhang X, Yang SY, Zhao H, Jiang SY, Zhang RX, Xie J (2017) Effect of beam current and diameter on electron probe microanalysis of carbonate minerals. J Earth Sci. https://doi.org/10.1007/s12583-017-0939-x

    Google Scholar 

Download references

Acknowledgements

YY acknowledge support from the National Key R&D Program of China (no. 2016YFC0600204) and the National Natural Science Foundation of China (no. 41672041). JRS was supported by US National Science Foundation Grant EAR14-16979. Raman spectra were collected at the Center of Physics Experiment Teaching, University of Science and Technology of China, while FTIR spectra were obtained at the Micro-FTIR Lab in Department of Earth Sciences, Institute of Geology and Geophysics, Zhejiang University. Composition analyses by EMPA for aragonite was carried out at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), and we offer many thanks to Dr. Simon M. Clark for helpful discussion and Dr. Zhilei Sui and Xiaoyan Gu for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 KB)

Fig. S1

. Raman spectra of the aragonite-group carbonates at ambient condition, as well as calcite quenched from aragonite–calcite phase transition at 800 K. The fitted peak positions are also labeled for each phase. (PDF 1595 KB)

Fig. S2

. FTIR spectra of the aragonite-group carbonates at ambient condition, and calcite quenched from aragonite–calcite phase transition at 773 K, with the peak positions labeled for each phase. (PDF 1342 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, Y., Wu, X. et al. High-temperature Raman and FTIR study of aragonite-group carbonates. Phys Chem Minerals 46, 51–62 (2019). https://doi.org/10.1007/s00269-018-0986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0986-6

Keywords

Navigation