Skip to main content

Advertisement

Log in

High-pressure phase behavior of SrCO3: an experimental and computational Raman scattering study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure phase behavior of strontianite (SrCO3) was both experimentally and theoretically investigated by Raman spectroscopy up to 78 GPa in a diamond anvil cell and density functional theory-based calculations. Our study shows a phase transition between 23.7 and 26.8 GPa during compression from space group Pmcn to post-aragonite SrCO3, which is accompanied by significant changes in the vibrational spectrum. The excellent agreement between the observed and computed Raman frequencies and intensities implies that the high-pressure polymorph has space group Pmmn and contributes to resolving an existing disagreement concerning the correct space group symmetry of this high-pressure polymorph. It is shown that the transition pressure from the aragonite to a post-aragonite phase increases linearly with decreasing cation radius for (Ca, Sr, Ba, Pb) carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arapan S, Ahuja R (2010) High-pressure phase transformations in carbonates. Phys Rev B 82:184115

    Article  Google Scholar 

  • Bayarjargal L, Winkler B (2014) Second harmonic generation measurements at high pressures on powder samples. Zeitschrift für Kristallographie Cryst Mater 229:92–100

    Google Scholar 

  • Biellmann C, Gillet P, Guyot F, Peyronneau J, Reynard B (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41

    Article  Google Scholar 

  • Bosak A, Fischer I, Krisch M, Brazhkin V, Dyuzheva T, Winkler B, Wilson D, Weidner D, Refson K, Milman V (2009) Lattice dynamics of stishovite from powder inelastic X-ray scattering. Geophys Res Lett 36:L19309

    Article  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  Google Scholar 

  • Chaney J, Santillán JD, Knittle E, Williams Q (2015) A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures. Phys Chem Miner 42:83–93

    Article  Google Scholar 

  • Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie Cryst Mater 220:567–570

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • De Villiers J (1971) Crystal structures of aragonite, strontianite and witherite. Am Miner 56:758–767

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman Group Limited, Essex

    Google Scholar 

  • Frech R, Wang EC, Bates JB (1980) The Ir and Raman spectra of CaCO3 (aragonite). Spectrochim Acta, Part A 36:915–919

    Article  Google Scholar 

  • Hammouda T, Keshav S (2015) Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem Geol 418:171–188

    Article  Google Scholar 

  • Kerrick DM, Connolly JA (2001) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189:19–29

    Article  Google Scholar 

  • Kushiro I, Satake H, Akimoto S (1975) Carbonate-silicate reactions at high pressures and possible presence of dolomite and magnesite in the upper mantle. Earth Planet Sci Lett 28:116–120

    Article  Google Scholar 

  • Lin C-C, Liu L-G (1997a) High pressure phase transformations in aragonite-type carbonates. Phys Chem Miner 24:149–157

    Article  Google Scholar 

  • Lin C-C, Liu L-G (1997b) Post-aragonite phase transitions in strontianite and cerussite—a high-pressure Raman spectroscopic study. J Phys Chem Solids 58:977–987

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673

    Article  Google Scholar 

  • Mao HK, Hemley RJ, Mao AJ (1997) Diamond-cell research with synchrotron radiation. In SK Sikka (Ed) Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures, Nov. 11–15, 1996, Bhabha Atomic Research Centre, Mumbai, India, 1st ed. National Institute of Science Communication, New Delhi

  • Merlini M, Hanfland M, Crichton WA (2012) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett 333–334:265–271

    Article  Google Scholar 

  • Milliman JD (1974) Marine carbonates, Part I. Springer, Heidelberg

    Google Scholar 

  • Minch R, Dubrovinsky L, Kurnosov A, Ehm L, Knorr K, Depmeier W (2010) Raman spectroscopic study of PbCO3 at high pressures and temperatures. Phys Chem Miner 37:45–56

    Article  Google Scholar 

  • Minsky M (1961) Microscopy apparatus. Google Patents

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  • Müller J, Speziale S, Efthimiopoulos I, Jahn S, Koch-Müller M (in press) Raman spectroscopy of siderite at high pressure: Evidence for a sharp spin transition. American Mineralogist. doi:10.2138/am-2016-5708

  • Neuhaus A (1964) Synthese Strukturverhalten und Valenzzustände der anorganischen Materie im Bereich hoher und höchster Drücke. Chimia 18:93

    Google Scholar 

  • Nguyen-Thanh T, Bosak A, Bauer JD, Luchitskaia R, Refson K, Milman V, Winkler B (2016) Lattice dynamics and elasticity of SrCO3. J Appl Cryst. doi:10.1107/S1600576716014205

    Google Scholar 

  • Ono S (2007) New high-pressure phases in BaCO3. Phys Chem Miner 34:215–221

    Article  Google Scholar 

  • Ono S, Shirasaka M, Kikegawa T, Ohishi Y (2005) A new high-pressure phase of strontium carbonate. Phys Chem Miner 32:8–12

    Article  Google Scholar 

  • Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  Google Scholar 

  • Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227

    Article  Google Scholar 

  • Refson K, Tulip PR, Clark SJ (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B 73:155114

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York, p 618

    Google Scholar 

  • Siidra OI, Krivovichev SV, Filatov SK (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Z Kristallogr 223:114–125

    Article  Google Scholar 

  • Speer JA, Hensley-Dunn ML (1976) Strontianite composition and physical properties. Am Mineral 61:1001–1004

    Google Scholar 

  • Walker D, Carpenter MA, Hitch CM (1990) Some simplifications to multianvil devices for high pressure experiments. Am Mineral 75:1020–1028

    Google Scholar 

  • Wang M, Liu Q, Nie S, Li B, Wu Y, Gao J, Wei X, Wu X (2015) High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3 and BaCO3. Phys Chem Miner 42:517–527

    Article  Google Scholar 

Download references

Acknowledgements

We thank Christian Schmidt for his assistance with Raman spectroscopy and all other colleagues from GFZ Potsdam who provided insights and fruitful discussions that greatly assisted the research. We also thank our reviewers for their thoughtful comments and suggestions. This study is embedded in the DFG-funded research unit FOR2125 CarboPaT (Structures, properties and reactions of carbonates at high pressures and temperatures).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Biedermann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biedermann, N., Speziale, S., Winkler, B. et al. High-pressure phase behavior of SrCO3: an experimental and computational Raman scattering study. Phys Chem Minerals 44, 335–343 (2017). https://doi.org/10.1007/s00269-016-0861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0861-2

Keywords

Navigation