Skip to main content

Advertisement

Log in

High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3 and BaCO3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The aragonite-structure carbonates—strontianite (SrCO3) and witherite (BaCO3)—were investigated by synchrotron X-ray diffraction combined with diamond anvil cells up to 30 and 15 GPa at room temperature, respectively. Phase transitions in SrCO3 (Pmcn to P21212) and BaCO3 (Pmcn to Pmmn) were observed at 22.2–26.9 and 9.8–11.2 GPa, respectively. Both strontianite and witherite display anisotropic linear compression under pressure, with the c-axis 2–3 times more compressible than the a-axis and b-axis. The obtained second-order Birch–Murnaghan equation of state parameters for strontianite and witherite are V 0 = 258.4(3) Å3, K 0 = 62(1) GPa; and V 0 = 304.8(3) Å3, K 0 = 48(1) GPa, respectively. Based on the current results for strontianite and witherite and previous data for aragonite (CaCO3) and cerussite (PbCO3), the bulk moduli of the aragonite-structure carbonates exhibit a linear correlation with ambient molar volume [K T0 (GPa) = 138 (5) – 2.0 (3) × V 0], with V 0 in cm3/mol, and the aragonite-structure to post-aragonite-structure phase transition pressures increase with decreasing ionic radius of the cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    Article  Google Scholar 

  • Anderson OL, Nafe JE (1965) The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J Geophys Res 70:3951–3963

    Article  Google Scholar 

  • Angel RJ (2000) Equations of state. Rev Mineral Geochem 41:35–59

    Article  Google Scholar 

  • Antao SM, Hassan I (2009) The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can Mineral 47:1245–1255

    Article  Google Scholar 

  • Arapan S, Ahuja R (2010) High-pressure phase transformations in carbonates. Phys Rev B 82:184115

    Article  Google Scholar 

  • Biellmann C, Gillet P, Guyot F, Peyronneau J, Reynard B (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924

    Article  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Jansses K, Szaloki I, Nasdala L, Joswing W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  Google Scholar 

  • De Villiers JPR (1971) Crystal structures of aragonite, strontianite, and witherite. Am Mineral 56:758–767

    Google Scholar 

  • Errandonea D, Meng Y, Somayazulu M, Häusermann D (2005) Pressure-induced α → ω transition in titanium metal: a systematic study of the effects of uniaxial stress. Phys B Condens Matter 355:116–125

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector to idealized image or twotheta scan. High Press Res 14:235–245

    Article  Google Scholar 

  • Hazen RM (1993) Comparative compressibilities of silicate spinels: anomalous behavior of (Mg, Fe)2SiO4. Science 259:206–209

    Article  Google Scholar 

  • Holl CM, Smyth JR, Laustsen HMS, Jacobsen SD, Downs RT (2000) Compression of witherite to 8 GPa and the crystal structure of BaCO3 II. Phys Chem Miner 27:467–473

    Article  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Lin CC, Liu LG (1997a) Post-aragonite phase transitions in strontianite and cerussite—a high-pressure Raman spectroscopic study. J Phys Chem Solids 58:977–987

    Article  Google Scholar 

  • Lin CC, Liu LG (1997b) High-pressure Raman spectroscopic study of post-aragonite phase transition in witherite (BaCO3). Eur J Mineral 9:785–792

    Article  Google Scholar 

  • Mao HK, Xu JA, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res [Solid Earth] 91:4673–4676

    Article  Google Scholar 

  • Martens R, Rosenhauer M, Gehlen KV (1982) Compressibilities of carbonates. High press Res Geosci. Germany, pp 215–222

  • Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624

    Google Scholar 

  • Minch R, Dubrovinsky L, Kurnosov A, Ehm L, Knorr K, Depmeier W (2010) Raman spectroscopic study of PbCO3 at high pressures and temperatures. Phys Chem Miner 37:45–56

    Article  Google Scholar 

  • Mitchell RH (1997) Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite. Mineral Mag 61:779–789

    Article  Google Scholar 

  • Nagle JK (1990) Atomic polarizability and electronegativity. J Am Chem Soc 112:4741–4747

    Article  Google Scholar 

  • Nestola F, Nardini L, Pasqual D, Periotto B, Lucchetti G, Miletich R, Belmonte D (2012) Compressibility of NaMnSi2O6: the role of electronic isovalency for the validity of bulk-modulus–volume relationship. Solid State Sci 14:1036–1039

    Article  Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103

    Article  Google Scholar 

  • Ono S (2007) New high-pressure phases in BaCO3. Phys Chem Miner 34:215–221

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005a) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671

    Article  Google Scholar 

  • Ono S, Shirasaka M, Kikegawa T, Ohishi Y (2005b) A new high-pressure phase of strontium carbonate. Phys Chem Miner 32:8–12

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249

    Article  Google Scholar 

  • Ono S, Brodholt JP, Price GD (2008) Phase transitions of BaCO3 at high pressures. Mineral Mag 72:659–665

    Article  Google Scholar 

  • Pohl D (1978) Electronic polarizabilities of ions in doubly refracting crystals. Acta Crystallogr A 34:574–578

    Article  Google Scholar 

  • Ride DR (1998) Handbook of chemistry and physics, 79th edn. CRC Press, Boca Raton

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York, p 618

    Google Scholar 

  • Santamaría-Pérez D, Gomis O, Sans JA, Ortiz HM, Vegas A, Errandonea D et al (2014) Compressibility systematics of calcite-type borates: an experimental and theoretical structural study on ABO3 (A = Al, Sc, Fe, and In). J Phys Chem C 118:4354–4361

    Article  Google Scholar 

  • Santillán J, Williams Q (2004) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am Mineral 89:1348–1352

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Shen Y, Kumar RS, Pravica M, Nicol MF (2004) Characteristics of silicon fluid as a pressure transmitting medium in diamond anvil cells. Rev Sci Instrum 75:4450–4454

    Article  Google Scholar 

  • Siidra OI, Krivovichev SV, Filatov SK (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Z Kristallogr 223:114–125

    Google Scholar 

  • Sirdeshmukh DB, Subhadra KG (1986) Bulk modulus-volume relationship for some crystals with a rock salt structure. J Appl Phys 59:276–277

    Article  Google Scholar 

  • Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. Rev Mineral Geochem 11:145–190

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Townsend JP, Chang YY, Lou X, Merino M, Kirklin SJ, Doak JW, Issa A, Wolverton C, Tkachev NS, Dera P, Jacobsen SD (2013) Stability and equation of state of post-aragonite BaCO3. Phys Chem Miner 40:447–453

    Article  Google Scholar 

  • Ye Y, Smyth JR, Boni P (2012) Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction. Am Mineral 97:707–712

    Article  Google Scholar 

  • Zaoui A, Shahrour I (2010) Molecular dynamics study of high-pressure polymorphs of BaCO3. Phil Mag Lett 90:689–697

    Article  Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870

    Google Scholar 

  • Zhang YF, Liu J, Qin ZX, Lin CL, Xiong L, Li R, Bai LG (2013) A high-pressure study of PbCO3 by X-ray diffraction and Raman spectroscopy. Chin Phys C 37:038001

    Article  Google Scholar 

Download references

Acknowledgments

We thank Qiang He and Junjie Tang for fruitful discussions. We are grateful to Feng Zhu and Ying Wang for their assistance with synchrotron X-ray diffraction data collection. Critical reviews by two anonymous reviewers, which helped to improve the manuscript, are greatly appreciated. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 41020134003, 40972028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Liu, Q., Nie, S. et al. High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3 and BaCO3 . Phys Chem Minerals 42, 517–527 (2015). https://doi.org/10.1007/s00269-015-0740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0740-2

Keywords

Navigation