Skip to main content

Advertisement

Log in

Modelling of thermo-chemical properties over the sub-solidus MgO–FeO binary, as a function of iron spin configuration, composition and temperature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Thermo-chemical properties and TX phase relations diagram of the (Mg,Fe)O solid solution are modelled using mixing Helmholtz energy, ΔF(T,x)mixing, calculated by quantum mechanical and semi-empirical techniques. The sub-solidus MgO–FeO binary has been explored as a function of composition, with iron either in high-spin (HS) or low-spin (LS) configuration. Only the HS model provides physically sound results at room pressure, yielding a correct trend of cell edge versus composition, whereas LS’s issues are at variance with observations. Mixing Helmholtz energy has been parametrized by the following relationship: ΔF(T,x)mixing = x × y × [U0(T) + U1(T) × (x – y) + U2(T) × (x − y)2]−T × S(x,y)config, where y = 1−x and U j(T) are polynomials in T of the second order. ΔF(T,x)mixing exhibits a quasi-symmetric behaviour and allows one to build the TX phase relations diagram over the MgO–FeO join. The HS model including vibrational contribution to the Helmholtz energy predicts a solid solution’s critical temperature of some 950 K, remarkably larger than olivine’s and Mg–Fe garnet’s. All this points to a more difficult Mg–Fe mixing in periclase-like structure than olivine and garnet, which, in turn, provide more structure degrees of freedom for atomic relaxation. From ΔF(T,x)mixing, we have then derived ΔH(T,x)excess and ΔS(T,x)excess. The former, characterized by a quasi-regular behaviour, has been parametrized through W × x × (1−x), obtaining W H,Mg–Fe of 17.7(5) kJ/mol. ΔS(T,x)excess, in turn, increases as a function of temperature, showing absolute figures confined within 0.1 J/mol/K. Mixing Gibbs energy, calculated combining the present issues with earlier theoretical determinations of the magnesio-wüstite’s elastic properties, has shown that the HS configuration is stable and promote Mg–Fe solid solution up to ≈15 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alfredsson M, Price GD, Catlow CRA, Parker SC, Orlando R, Brodholt JP (2004) Electronic structure of the antiferromagnetic B1-structured FeO. Phys Rev B 70:165111–165116

    Article  Google Scholar 

  • Anisimov VI, Korotin MA, Kurmaev EZ (1990) Band-structure description of Mott insulators (NiO, MnO, FeO, CoO). J Phys Condens Matter 2:3973–3987

    Article  Google Scholar 

  • Antonangeli D, Siebert J, Aracne CM, Farber DL, Bosak A, Hoesch M, Krisch M, Ryerson FJ, Fiquet G, Badro J (2011) Spin crossover in ferropericlase at high pressure: a seismologically transparent transition? Geophysical Research Abstracts, vol 13, EGU2011-12930

  • Badro J, Struzhkin V, Shu J, Hemley RJ, Mao HK, Kao CC, Rueff JP, Shen G (1999) Magnetism in FeO at megabar pressures from x-ray emission spectroscopy. Phys Rev Lett 83:1401–1404

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in earth’s mantle: toward a deep lower-mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • Baiocchi M, Caucia F, Merli M, Prella D, Ungaretti L (2001) Crystal-chemical reasons for the immiscibility of periclase and wüstite under lithospheric P, T conditions. Eur J Miner 13:871–881

    Article  Google Scholar 

  • Barnard RW, Dahlquist G, Pearce K, Reichel L, Richards KC (1998) Gram polynomials and the Kummer function. J Approx Theory 94:128–143

    Article  Google Scholar 

  • Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882

    Article  Google Scholar 

  • Benisek A, Dachs E (2012) A relationship to estimate the excess entropy of mixing: application in silicate solid solutions and binary alloys. J Alloys Compd 527:127–131

    Article  Google Scholar 

  • Bennet J, Kwong S (2010) Thermodynamic studies of MgO saturated EAF slag. Ironmak Steelmak 37:529–535

    Article  Google Scholar 

  • Causà M, Dovesi R, Pisani C, Roetti C (1986) Electronic structure and stability of different crystal phases of magnesium oxide. Phys Rev B 33:1308–1316

    Article  Google Scholar 

  • Cohen RE, Mazin II, Donald G, Isaak DG (1997) Magnetic collapse in transition metal oxides at high pressure: implications for the earth. Science 275:654–665

    Article  Google Scholar 

  • Cook SJ, Bowman JR (2000) Mineralogical evidence for fluid–rock interaction accompanying prograde contact metamorphism of siliceous dolomites: alta stock aureole, Utah, USA. J Petrol 41:739–757

    Article  Google Scholar 

  • Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron correlation effects. Molec Phys 99(23):1899–1940

    Article  Google Scholar 

  • Crowhurst JC, Brown JM, Goncharov AF, Jacobsen SD (2008) Elasticity of (Mg, Fe)O through the spin transition of iron in the lower mantle. Science 319:451–453

    Article  Google Scholar 

  • Dachs E, Geiger CA (2007) Entropies of mixing and subsolidus phase relations of forsterite–fayalite (Mg2SiO4–Fe2SiO4) solid solution. Am Miner 92:699–702

    Article  Google Scholar 

  • De La Pierre M, Noël Y, Mustapha S, Meyer A, D’Arco P, Dovesi R (2013) The infrared vibrational spectrum of andradite-grossular solid solutions: a quantum mechanical simulation. Am Miner 98:966–976

    Article  Google Scholar 

  • Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P,, Llunell M (2009) CRYSTAL09 User’s Manual (University of Torino) Torino

  • Dubrovinsky LS, Saxena SK (1997) Thermal expansion of periclase and tungsten to melting temperature. Phys Chem Miner 24:547–550

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Saxena SK, Annersten H, Halenius E, Harryson H, Tutti F, Rekhi S, Le Bihan T (2000) Stability of ferropericlase in the lower mantle. Science 289:430–432

    Article  Google Scholar 

  • Duffy TS, Hemley RJ, Mao HK (1995) Equation of state and shear strength of magnesium oxide to 227 GPa. Phys Rev Lett 74:1371–1374

    Article  Google Scholar 

  • Fabrichnaya O, Saxena SK, Richet P, Westrum EF (2004) Thermodynamic data, models, and phase diagrams in multicomponent oxide systems. Springer, New York

    Book  Google Scholar 

  • Fang Z, Terakura K, Sawada H, Miyazaki T, Solovyev I (1998) Inverse versus normal NiAs structures as high-pressure phases of FeO and MnO. Phys Rev Lett 81:1027–1030

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. AGU Ref Shelf, vol 2. American Geophysical Union, Washington, pp 29–44

  • Fei Y (1999) Effects of temperature and composition on the bulk modulus of (Mg, Fe)O. Am Miner 84:272–276

    Google Scholar 

  • Fei Y, Mao HK (1994) In-situ determination of the NiAs phase of FeO at high-pressure and temperature. Science 266:1678–1680

    Article  Google Scholar 

  • Ferreira LG, Mbaye AA, Zunger A (1988) Chemical and elastic effects on isostructural phase diagrams: the ε–G approach. Phys Rev B 37:10547–10569

    Article  Google Scholar 

  • Fischer R, Campbell AJ, Shofner GA, Lord OT, Dera P, Prakapenka VB (2011) Equation of state and phase diagram of FeO. Earth Plan Sci Lett 304:496–502

    Article  Google Scholar 

  • Fjellvag H, Gronvold F, Stolen S, Hauback BC (1996) On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J Sol State Chem 124:52–57

    Article  Google Scholar 

  • Gale JD (1997) GULP-a computer program for the symmetry adapted simulation of solids. JCS Faraday Trans 93:629–637

    Article  Google Scholar 

  • Ganguly J, Kennedy GC (1974) The energetics of natural solid solution. 1. Mixing of the aluminosilicate end-members. Contrib Miner Petrol 48:137–148

    Article  Google Scholar 

  • Ganino C, Arndt NT, Chauvel C, Jean A, Athurion C (2013) Melting of carbonate wall rocks and formation of the heterogeneous aureole of the Panzhihua intrusion, China. Geosci Front 4:535–546

    Article  Google Scholar 

  • Garnero E (2000) Heterogeneity of the lower mantle. Annu Rev Earth Planet Sci 28:509–537

    Article  Google Scholar 

  • Geiger CA, Newton RC, Kleppa OJ (1987) Enthalpy of mixing of synthetic almandine-grossular and almandine-pyrope garnets from high-temperature solution calorimetry. Geochim Cosmochim Acta 51:1755–1763

    Article  Google Scholar 

  • Goncharov F, Struzhkin VV, Jacobsen SD (2006) Reduced radiative conductivity of low-spin (Mg, Fe)O in the lower mantle. Science 312:1205–1208

    Article  Google Scholar 

  • Grønvold F, Stølen S, Tolmach P, Westrum EF (1993) Heat capacities of the wüstites Fe0.9379O and Fe0.9254O at temperatures T from 5 K to 350 K. Thermodynamics of the reaction: xFe(s) + (1/4)Fe3O4(s) = Fe0.7500+xO(s) = Fe1−yO(s) at T ≈ 850 K, and properties of Fe1−yO(s) to T = 1000 K. Thermodynamics of formation of wüstite. J Chem Thermodyn 25:1089–1117

    Article  Google Scholar 

  • Haider S, Grau-Crespo R, Devey AJ, de Leeuw NH (2012) Cation distribution and mixing thermodynamics in Fe/Ni thiospinels. Geochim Cosmochim Acta 88:275–282

    Article  Google Scholar 

  • Hasegawa M, Tsukamoto T, Masanori I (2006) Activity of iron oxide in magnesiowürstite in equilibrium with solid metallic iron. Mater Trans 47:854–860

    Article  Google Scholar 

  • Hill R (1974) Energy-gap variations in semi-conductor alloys. J Phys C Solid State Phys 7:521–526

    Article  Google Scholar 

  • Hirose K, Lay T (2008) Discovery of post-perovskite and new views on the core–mantle boundary region. Elements 4:183–189

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Irifune T, Shinmei T, McCammon CA, Miyajima N, David C, Rubie DC, Frost DJ (2010) Iron partitioning and density changes of pyrolite in earth’s lower mantle. Science 327:193–195

    Article  Google Scholar 

  • Jacobsen SD, Reichmann HJ, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon CA (2002) Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res 107:1–13

    Google Scholar 

  • Jeanloz R, Ahrens T (1980) Equation of state of FeO and CaO. Geophys J R Astron Soc 62:505–528

    Article  Google Scholar 

  • Jeanloz R, Knittle E (1989) Density and composition of the lower mantle. Philos Trans R Soc Lond Ser A 328:377–389

    Article  Google Scholar 

  • Jeanloz R, Lay T (1993) The core–mantle boundary. Sci Am 268:26–33

    Article  Google Scholar 

  • Kantor I, Dubrovinsky L, McCammon C, Kantor A, Pascarelli S, Aquilanti G, Wilson C, Mattesini M, Ahuja R, Almeida J, Urusov V (2006) Pressure-induced phase transition in Mg0.8Fe0.2O ferropericlase. Phys Chem Miner 33:35–44

    Article  Google Scholar 

  • Karki BB, Stixrude L, Clark SJ, Warren MC, Ackland GJ, Crain J (1997) Structure and elasticity of MgO at high pressure. Am Miner 82:51–60

    Google Scholar 

  • Kittel C (2005) Introduction to solid state physics (8th edn). Wiley, New York. ISBN978-0-471-41526-8

  • Kojitani H, Akaogi M (1994) Calorimetric study of olivine solid solutions in the system Mg2SiO4–Fe2SiO4. Phys Chem Miner 20:536–540

    Article  Google Scholar 

  • Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg, Fe)O at megabar pressures. Phys Earth Planet Inter 143:201–213

    Article  Google Scholar 

  • Kubaschewki O, Alcock CB, Spencer RJ (1993) Materials thermochemistry, 6th edn. Pergamon Press, Oxford

    Google Scholar 

  • Kwong K, Bennet J, Krabbe R, Petty A, Thoms H (2009) Thermodynamic calculations predicting MgO saturated EAF slag for use EAF steel production. In Supplemental proceedings. Materials characterization, computation and modeling. TMS (The Minerals, Melts & Materials Society), vol 2, pp 63–70

  • Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  • Lee KKM, O’Neill B, Panero WR, Shim SH, Benedetti LR, Jeanloz R (2004) Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth Planet Sci Lett 223:381–393

    Article  Google Scholar 

  • Lewis GV, Catlow CRA (1985) Potential models for ionic oxides. J Phys C Solid State Phys 18:1149–1162

    Article  Google Scholar 

  • Lin JF, Wenk HR, Voltolini M, Speziale S, Shu J, Duffy TS (2009) Deformation of lower-mantle ferropericlase (Mg, Fe)O across the electronic spin transition. Phys Chem Miner 36:585–592

    Article  Google Scholar 

  • Lin JF, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 5:244–275

    Article  Google Scholar 

  • Lyubutin IS, Gavriliuk AG, Frolov KV, Lin JF, Troyan IA (2009) High-spin–low-spin transition in Magnesiowüstite (Mg0.75, Fe0.25)O at high pressures under hydrostatic conditions. JETP Lett 90:617–622

    Article  Google Scholar 

  • Lyubutin IS, Struzhkin VV, Mironovichc AA, Gavriliuk AG, Naumova PG, Lin J-F, Ovchinnikov SG, Sinogeikin S, Chow P, Xiao Y, Hemley RJ (2013) Quantum critical point and spin fluctuations in lower-mantle ferropericlase. PNAS 110:7142–7147

    Article  Google Scholar 

  • Mao HK, Shu JF, Fei YW, Hu JZ, Hemley RJ (1996) The wüstite enigma. Phys Earth Planet Inter 96:135–145

    Article  Google Scholar 

  • McCammon CA, Ringwood AE, Jackson I (1983) Thermodynamics of the system Fe–FeO–MgO at high pressure and temperature and a model for formation of the earth’s core. Geophys J R Astron Soc 72:577–595

    Article  Google Scholar 

  • Meyer A, D’Arcò P, Orlando R, Dovesi R (2009) Andradite-Uvarovite solid solutions. An ab Initio All-Electron Quantum Mechanical Simulation with the CRYSTAL06 Code. J Phys Chem C 113:14507–14511

    Article  Google Scholar 

  • Müller T, Baumgartner LP, Foster CT, Bowman JR (2009) Crystal size distribution of periclase in contact metamorphic dolomite marbles from the southern Adamello Massif, Italy. J Petrol 50:451–465

    Article  Google Scholar 

  • Oganov A, Dorogokupets PI (2003) All-electrons and pseudopotential study of MgO: equation of state, anharmonicity and stability. Phys Rev B 67:224110-1/11

  • O’Neill HSC, Powneeby MI, McCammon CA (2003) The magnesiowüstite: iron equilibrium and its implications for the activity-composition relations of (Mg, Fe)2SiO4 olivine solid solutions. Contrib Miner Petrol 146:308–325

    Article  Google Scholar 

  • Ottonello G, Civalleri B, Ganguly J, Vetuschi Zuccolini M, Noel Y (2008) Thermo-physical properties of the a–b–c polymorphs of Mg2SiO4: an all-electron ab initio study. Phys Chem Miner 36:87–106

    Article  Google Scholar 

  • Ottonello G, Civalleri B, Ganguly J, Perger WF, Belmonte D, Vetuschi Zuccolini M (2010) Thermo-chemical and thermo-physical properties of the high pressure phase anhydrous B(Mg14Si5O24): an ab initio all-electron investigation. Am Mineral 95:563–573

    Article  Google Scholar 

  • Pasternak MP, Taylor RD, Jeanloz R, Li X, Nguyen JH, McCammon CA (1997) High pressure collapse of magnetism in Fe0.94O: mössbauer spectroscopy beyond 100 GPa. Phys Rev Lett 79:5046–5049

    Article  Google Scholar 

  • Pavese A, Diella V (2007) Uncertainties on elastic parameters and occupancy factors: How do they affect the accuracy of the calculated Gibbs energy of minerals at (P, T) conditions? The case of 3T-versus 2M1-phengite. Phys Chem Miner 34:637–645

    Article  Google Scholar 

  • Persson K, Bengtson A, Ceder G, Morgan D (2006) Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1x, Fex)O system. Geophys Res Lett 3:L16306

    Article  Google Scholar 

  • Righter K, Drake MJ, Scott ERD (2006) Compositional relationships between meteorites and terrestrial planets. In: Lauretta D, McSween HY Jr (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 803–828

    Google Scholar 

  • Rosenhauer M, Mao HK, Woermann E (1976) Compressibility of magnesiowtistite (Fe0.4Mg0.60) to 264 kbar. Year Book Carnegie Inst Wash 75:513–515

    Google Scholar 

  • Ruiz-Hernandez SE, Grau-Crespo R, Ruiz-Salvador AR, Nora H, De Leeuw NH (2010) Thermochemistry of strontium incorporation in aragonite from atomistic simulations. Geochim Cosmochim Acta 74:1320–1328

    Article  Google Scholar 

  • Sanchez JM, Ducastelle F, Gratias D (1984) Generalized cluster description of multicomponent systems. Phys A 128:334–350

    Article  Google Scholar 

  • Scanavino I, Prencipe M (2013) Ab-initio determination of high-pressure and high-temperature thermoelastic and thermodynamic properties of low-spin (Mg1–xFex)O ferropericlase with x in the range [0.06, 0.59]. Am Miner 98:1270–1278

    Article  Google Scholar 

  • Scanavino I, Belousov R, Prencipe M (2012) Ab initio quantum-mechanical study of the effects of the inclusion of iron on thermoelastic and thermodynamic properties of periclase (MgO). Phys Chem Miner 39:649–663

    Article  Google Scholar 

  • Simons B (1980) Composition-lattice parameter relationship of the magnesiowüstite solid solution series. Year Book Carnegie Inst Wash 79:376–380

    Google Scholar 

  • Smolin A, Schmalzried H (2003) Electrochemically driven solid state reactions in magnesium-wüstite. Phys Chem Phys 5:2248–2252

    Article  Google Scholar 

  • Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in earth’s mantle. Proc Natl Acad Sci 102:17918–17922

    Article  Google Scholar 

  • Sreçec I, Ender A, Woermann E, Gans W, Jacobsson E, Eriksson G, Rosen E (1987) Activity-composition relations of the magnesiowüstite solid solution series in equilibrium with metallic iron in the temperature range 1050–1400 K. Phys Chem Miner 14:492–498

    Article  Google Scholar 

  • Stølen S, Grande T (2004) Chemical thermodynamics of materials: macroscopic and microscopic aspects. Wiley, England

    Google Scholar 

  • Stølen S, Gløckner R, Grønvold F, Atake T, Izumisawa S (1996) Heat capacity and thermodynamic properties of nearly stoichiometric wüstite from 13 to 450 K. Am Miner 81:973–981

    Google Scholar 

  • Taurian OE, Springborg M, Christensen NE (1985) Self-consistent electronic structures of MgO and SrO. Solid State Commun 55:351–355

    Article  Google Scholar 

  • Valerio G, Catti M, Dovesi R, Orlando R (1995) Ab initio study of antiferromagnetic rutile-type FeF2. Phys Rev B 52:2422–2427

    Article  Google Scholar 

  • Van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584

    Article  Google Scholar 

  • Vinograd VL, Winkler B (2010) An efficient cluster expansion method for binary solid solutions: application to the halite-silvite, NaCl–KCl, system. Rev Miner Geochem 71:413–436

    Article  Google Scholar 

  • Vinograd VL, Brandt F, Rozova K, Klinkenberga M, Refsonc K, Winkler B, Bosbacha D (2013) Solid–aqueous equilibrium in the BaSO4–RaSO4–H2O system: first-principles calculations and a thermodynamic assessment. Geochim Cosmochim Acta 122:398–417

    Article  Google Scholar 

  • Wallmach T, Hatton CJ, Droop GTR (1989) Extreme facies of contact metamorphism developed in calc-silicate xenoliths in the Eastern Bushveld complex. Can Miner 27:509–523

    Google Scholar 

  • Wenzel T, Baumgartner LP, Brügmann GE, Konnikov EG, Kislov EV (2002) Partial melting and assimilation of dolomitic Xenoliths by mafic magma: the Ioko-Dovyren intrusion (North bajkal Region, Russia). J Petrol 43:2049–2074

    Article  Google Scholar 

  • Wood BJ, Kleppa OJ (1981) Thermochemistry of forsterite-fayalite olivine solutions. Geochim Cosmochim Acta 45:529–553

    Article  Google Scholar 

  • Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116

    Article  Google Scholar 

  • Yagi T, Suzuki T, Akimoto S (1985) Static compression of wüstite (Fe0.98O) to 120 GPa. J Geophys Res 90:8784–8788

    Article  Google Scholar 

  • Yagi T, Fukuoka K, Takei H, Syono Y (1988) Shock compression of wüstite. Geophys Res Lett 15:816–819

    Article  Google Scholar 

  • Yao YX, Sun Y, Wang HZ, Li YF (2013) Chemical state, site, solid solubility, and magnetism of Fe in the ferropericlase (Mg1−xFex)O produced by ball milling of MgO and Fe. Metall Mater Trans A 44:4551–4557

    Article  Google Scholar 

  • Yoshiasa A, Sugiyama K, Sakai S, Isobe H, Sakamoto D, Ota K, Arima H, Takei H (2009) Synthesis of single crystal(Mg1−xFex)1−δO (χ = 0.001–1.00) solid-solution and electrical conduction mechanism at high temperature and pressure. J Cryst Growth 311:974–977

    Article  Google Scholar 

  • Zhang J (2000) Effect of defects on the elastic properties of wüstite. Phys Rev Lett 84:507–511

    Article  Google Scholar 

  • Zhang J, Kostak P (2002) Thermal equation of state of magnesiowüstite (Mg0.6Fe0.4)O. Phys Earth Plan Int 129:301–311

    Article  Google Scholar 

  • Zhao CZ, Zhang R, Liu B, Fu DY, Li M, Xiu ZQ, Xie ZL, Zheng YD (2012) A modified simplified coherent potential approximation model of band gap energy of III-V ternary alloys. Sci China Phys Mech Astron 55:400–403

    Article  Google Scholar 

Download references

Acknowledgments

The present investigation was funded by Italian M.I.U.R through P.R.I.N Grant No. 2010EARRRZ_003. The authors are grateful to Victor Vinograd and to two anonymous referees whose suggestions have really enhanced the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pavese.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merli, M., Sciascia, L., Pavese, A. et al. Modelling of thermo-chemical properties over the sub-solidus MgO–FeO binary, as a function of iron spin configuration, composition and temperature. Phys Chem Minerals 42, 347–362 (2015). https://doi.org/10.1007/s00269-014-0725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0725-6

Keywords

Navigation