Skip to main content

Advertisement

Log in

A high-pressure neutron diffraction study of the ferroelastic phase transition in RbCaF3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The fluoroperovskite phase RbCaF3 has been investigated using high-pressure neutron powder diffraction in the pressure range ~0–7.9 GPa at room temperature. It has been found to undergo a first-order high-pressure structural phase transition at ~2.8 GPa from the cubic aristotype phase to a hettotype phase in the tetragonal space group I4/mcm. This transition, which also occurs at ~200 K at ambient pressure, is characterised by a linear phase boundary and a Clapeyron slope of 2.96 × 10−5 GPa K−1, which is in excellent agreement with earlier, low-pressure EPR investigations. The bulk modulus of the high-pressure phase (49.1 GPa) is very close to that determined for the low-pressure phase (50.0 GPa), and both are comparable with those determined for the aristotype phases of CsCdF3, TlCdF3, RbCdF3, and KCaF3. The evolution of the order parameter with pressure is consistent with recent modifications to Landau theory and, in conjunction with polynomial approximations to the pressure dependence of the lattice parameters, permits the pressure variation of the bond lengths and angles to be predicted. On entering the high-pressure phase, the Rb–F bond lengths decrease from their extrapolated values based on a third-order Birch–Murnaghan fit to the aristotype equation of state. By contrast, the Ca–F bond lengths behave atypically by exhibiting an increase from their extrapolated magnitudes, resulting in the volume and the effective bulk modulus of the CaF6 octahedron being larger than the cubic phase. The bulk moduli for the two component polyhedra in the tetragonal phase are comparable with those determined for the constituent binary fluorides, RbF and CaF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguado F, Rodríguez F, Hirai S, Walsh JN, Lennie A, Redfern SAT (2008) High-pressure behaviour of KMF3 perovskites. High Press Res 28:539–544

    Article  Google Scholar 

  • Almairac R, Rousseau M, Gesland JY, Nouet J, Hennion B (1977) The 193 K phase transition in RbCaF3: II critical neutron scattering. J Phys-Paris 38:1429–1434

    Article  Google Scholar 

  • Angel RJ (1993) The high-pressure, high-temperature equation of state of calcium fluoride, CaF2. J Phys-Condens Mat 5:L141–L144

    Article  Google Scholar 

  • Åsbrink S, Waśkowska A, Ratuszna A (1993) A high-pressure X-ray diffraction study of the phase transition in KMnF3. J Phys Chem Solids 54:507–511

    Article  Google Scholar 

  • Bates JB, Major RW, Modine FA (1975) Phase transitions in RbCaF3. I: optical studies. Solid State Commun 17:1347–1354

    Article  Google Scholar 

  • Besson JM, Nelmes RJ, Hamel G, Loveday JS, Weill G, Hull S (1992) Neutron powder diffraction above 10 GPa. Phys B 180:907–910

    Article  Google Scholar 

  • Bulou A, Ridou C, Rousseau M, Nouet J, Hewat AW (1980) The temperature dependence of the structures of RbCaF3, and the determination of the low temperature phases. J Phys-Paris 40:87–96

    Article  Google Scholar 

  • Cao W, Barsch GR (1988) Elastic constants of KMnF3 as functions of temperature and pressure. Phys Rev B 38:7947–7958

    Article  Google Scholar 

  • Carpenter MA (2007a) Elastic anomalies accompanying phase transitions in (Ca, Sr)TiO3 perovskites: Part I. Landau theory and a calibration for SrTiO3. Am Miner 92:309–327

    Article  Google Scholar 

  • Carpenter MA (2007b) Elastic anomalies accompanying phase transitions in (Ca, Sr)TiO3 perovskites: Part II. calibration for the effects of composition and pressure. Am Miner 92:328–343

    Article  Google Scholar 

  • Carpenter MA (2009) Elastic anomalies accompanying phase transitions in (Ca,Sr)TiO3 perovskites: Part I. Landau theory and a calibration for SrTiO3. Erratum. Am Mineral 94:1084

    Google Scholar 

  • Carpenter MA, Becerro AI, Seifert F (2001) Strain analysis of phase transitions in (Ca, Sr)TiO3 perovskites. Am Miner 86:348–363

    Google Scholar 

  • Cowley RA (1964) Lattice dynamics of SrTiO3. Phys Rev 134:A981–997

    Article  Google Scholar 

  • Daniel Ph, Rousseau M, Toulouse J (1997) Vibrational investigation of the antiferrodistortive structural instabilities in the perovskite crystal RbCaF3. Phys Rev B 55:6222–6231

    Article  Google Scholar 

  • Demarest HH Jr, Cassell CR, Jamieson JC (1978) The high pressure phase transitions in KF and RbF. J Phys Chem Solids 39:1211–1215

    Article  Google Scholar 

  • Dobson DP, Hunt SA, Lindsay-Scott A, Wood IG (2011) Towards better analogues for MgSiO3 perovskite: NaCoF3 and NaNiF3, two recoverable fluoride post-perovskites. Phys Earth Planet In 189:171–175

    Article  Google Scholar 

  • Dobson DP, Miyajima N, Nestola F, Alvaro M, Casati N, Liebske C, Wood IG, Walker AM (2013) Strong inheritance of texture between perovskite and post-perovskite in the D″ layer. Nat Geosci 6:575–578

    Article  Google Scholar 

  • Fischer M (1982) Third and fourth order elastic constants of fluoroperovskites CsCdF3, TlCdF3, RbCdF3, RbCaF3. J Phys Chem Solids 43:673–682

    Article  Google Scholar 

  • Fortes AD (2004) Computational and experimental studies of solids in the ammonia—water system. University College, London

    Google Scholar 

  • Gesi K, Ozawa K (1973) Dielectric study of the pressure effect on the cubic-tetragonal phase transition in KMnF3. J Phys Soc Jpn 34:1698

    Article  Google Scholar 

  • Gibaud A, Ryan TW, Nelmes RJ (1987a) Critical fluctuations in RbCaF3: I. a high-resolution X-ray scattering study. J Phys C Solid State 20:3833–3848

    Article  Google Scholar 

  • Gibaud A, Cowley RA, Mitchell PW (1987b) Critical fluctuations in RbCaF3: II. analysis of the experimental results. J Phys C Solid State 20:3849–3861

    Article  Google Scholar 

  • Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Cryst B28:3384–3392

    Article  Google Scholar 

  • Guennou M, Bouvier P, Kreisel J, Machon D (2010) Pressure–temperature phase diagram of SrTiO3 up to 53 GPa. Phys Rev B 81:054115

    Article  Google Scholar 

  • Guennou M, Bouvier P, Garbarino G, Kreisel J, Salje EKH (2011) Pressure-induced phase transition(s) in KMnF3 and the importance of excess volume for phase transitions in perovskite structures. J Phys-Condens Mat 23:485901

    Article  Google Scholar 

  • Hayward SA, Salje EKH (1999) Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism. Phase Transit 68:501–522

    Article  Google Scholar 

  • Ho JC, Unruh WP (1976) Specific heat of RbCaF3 below 300 K. Phys Rev B 13:447–450

    Article  Google Scholar 

  • Howard CJ, Stokes HT (1998) Group-theoretical analysis of octahedral tilting in perovskites. Acta Cryst B 54:782–789

    Article  Google Scholar 

  • Hustoft J, Catalli K, Shim S-H, Kubo A, Prakapenka VB, Kunz M (2008) Equation of state of NaMgF3 postperovskite: Implication for the seismic velocity changes in the D″ region. Geophys Res Lett 35:L10309

    Article  Google Scholar 

  • Katrusiak A, Ratuszna A (1992) Phase transitions and the structure of NaMnF3 perovskite crystals as a function of temperature and pressure. Solid State Commun 84:435–441

    Article  Google Scholar 

  • Knight KS (2001) Structural phase transitions, oxygen vacancy ordering and protonation in doped BaCeO3: results from time-of-flight neutron powder diffraction investigations. Solid State Ionics 145:275–294

    Article  Google Scholar 

  • Knight KS (2009) Parameterization of the crystal structures of centrosymmetric zone-boundary-tilted perovskites: an analysis in terms of symmetry-adapted basis vectors of the cubic aristotype phase. Can Miner 47:381–400

    Article  Google Scholar 

  • Knight KS (2011) Centrosymmetric perovskite crystal structures with space group Pbnm: Crystallographic parameterisation of KCaF3 between 100 and 400 K in terms of the amplitudes of symmetry-adapted basis vectors of the cubic aristotype phase. Can Miner 49:793–808

    Article  Google Scholar 

  • Koussina F, Bonnetot B, Diot M (1992) Propriétés thermodynamiques des fluoropérovskites de potassium (KCaF3) et de rubidium (RbCaF3) (10–300 K): transition de phase. Thermochim Acta 206:1–11

    Article  Google Scholar 

  • Kuznetsov AZ, Dmitriev V, Dubrovinsky L, Prakapenka V, Weber H-P (2002) Fcc—hcp phase transition in lead. Solid State Commun 122:125–127

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1986) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  • Lindsay-Scott A, Wood IG, Dobson D, Vočadlo L, Brodholt JP, Crichton W, Hanfland M, Taniguchi T (2010) The isothermal equation of state of CaPtO3 post-perovskite to 40 GPa. Phys Earth Planet In 182:113–118

    Article  Google Scholar 

  • Lindsay-Scott A, Wood IG, Dobson D, Vočadlo L, Brodholt JP, Knight KS, Tucker MG, Taniguchi T (2011) Thermoelastic and crystal structure of CaPtO3 post-perovskite from 0 to 9 GPa and from 2 to 973 K. J Appl Crystallogr 44:999–1016

    Article  Google Scholar 

  • Liu H-Z, Chen J, Hu J, Martin CD, Weidner DJ, Häusermann D, Mao H-K (2005) Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32:L04304

    Google Scholar 

  • Marshall WG, Francis DJ (2002) Attainment of near-hydrostatic conditions using the Paris-Edinburgh cell. J Appl Crystallogr 35:122–125

    Article  Google Scholar 

  • Martin CD, Crichton WA, Liu H, Prakapenka V, Chen J, Parise JB (2006) Phase transitions and compressibility of NaMgF3 (neighborite) in perovskite- and post-perovskite-related structures. Geophys Res Lett 33:L11305

    Article  Google Scholar 

  • Martin CD, Chapman KW, Chupas PJ, Vitali P, Lee PL, Shastri SD, Parise JB (2007a) Compression, thermal expansion, structure and instability of CaIrO3, the structure model of MgSiO3 post-perovskite. Am Miner 92:1048–1053

    Article  Google Scholar 

  • Martin CD, Smith RI, Marshall WG, Parise JB (2007b) High-pressure structure and bonding in CaIrO3: the structure model of MgSiO3 post-perovskite investigated with time-of-flight neutron powder diffraction. Am Miner 92:1912–1918

    Article  Google Scholar 

  • McKnight REA, Howard CJ, Carpenter MA (2009) Elastic anomalies associated with transformation sequences in perovskites: I. strontium zirconate, SrZrO3. J Phys-Condens Mat 21:015901

    Article  Google Scholar 

  • Miller RA, Schuele DE (1969) Pressure derivatives of elastic constants of lead. J Phys Chem Solids 30:589–600

    Article  Google Scholar 

  • Mitchell RH (2002) Perovskites modern and ancient. Almaz Press, Ontario

    Google Scholar 

  • Modine FA, Sonder E, Unruh WP, Finch CB, Westbrook RD (1974) Phase transitions in RbCaF3. Phys Rev B 10:1623–1634

    Article  Google Scholar 

  • Müller KA, Berlinger W, Buzaré JY, Fayet JC (1980) Shift of the first-order transition in RbCaF3 under hydrostatic pressure. Phys Rev B 21:1763–1765

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Nelmes RJ, Loveday JS, Wilson RM, Besson JM, Klotz S, Hamel G, Hull S (1994) Structure studies at high pressure using neutron powder diffraction. In: Jorgensen JD, Schultz AJ (eds) Proceedings of the symposium on time-of-flight diffraction at pulsed neutron sources. American Crystallographic Association, New York, pp 19–27

    Google Scholar 

  • Nye JF (1957) Physical properties of crystals. Oxford University Press, Oxford

    Google Scholar 

  • Oganov AR, Price GD, Scandalo S (2005) Ab initio theory of planetary materials. Zeit Kristallogr 220:531–548

    Google Scholar 

  • Okai B, Yoshimoto J (1975) Pressure dependence of the structural phase transition temperature in SrTiO3 and KMnF3. J Phys Soc Jpn 39:162–165

    Article  Google Scholar 

  • Ridou C, Rousseau M, Freund A (1977) Détermination precise des paramètres cristallins au voisinage du changement de phase cubique quadratique dans RbCaF3. J Phys Lett-Paris 38:L359–L363

    Article  Google Scholar 

  • Ridou C, Rousseau M, Freund A (1980) Study of tetragonal domains in the cubic phase of RbCaF3 crystals by means of X-ray diffractometry. Solid State Commun 35:723–726

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Rousseau M, Nouet J, Almairac R (1977) The 193 K phase transition in RbCaF3: I lattice dynamics. J Phys-Paris 38:1423–1428

    Article  Google Scholar 

  • Ryan TW, Nelmes RJ, Cowley RA, Gibaud A (1986) Observations of two length scales for the critical fluctuations of RbCaF3. Phys Rev Lett 56:2704–2707

    Article  Google Scholar 

  • Sakata M, Hidaka M, Storey JS (1979) A comment on the phase transition in RbCaF3. Solid State Commun 32:813–817

    Article  Google Scholar 

  • Salje EKH, Wruck B, Thomas H (1991) Order-parameter saturation and low-temperature extension of Landau theory. Zeit Phys B Con Mat 82:399–404

    Article  Google Scholar 

  • Salje EKH, Gallardo MC, Jiménez J, Romero FJ, del Cerro J (1998) The cubic-tetragonal phase transition in strontium titanate: excess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism. J Phys-Condens Mat 10:5535–5543

    Article  Google Scholar 

  • Salje EKH, Guennou M, Bouvier P, Carpenter MA, Keisel J (2011) High pressure ferroelastic phase transition in SrTiO3. J Phys-Condens Mat 23:275901

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Trokiner A, Zanni-Theveneau H (1988) The structural phase transition in RbCaF3: an 87Rb nuclear magnetic resonance investigation at various pressures. J Phys C Solid State 21:4913–4930

    Article  Google Scholar 

  • Umemoto K, Wentzcovitch R, Weidner DJ, Parise JB (2006) NaMgF3: a low-pressure analog of MgSiO3. Geophys Res Lett 33:L15304

    Article  Google Scholar 

  • Vanderbilt D, Cohen MH (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108

    Article  Google Scholar 

  • Waldorf DL, Alers GA (1962) Low temperature elastic moduli of lead. J Appl Phys 33:3266–3269

    Article  Google Scholar 

  • Wood IG, Knight KS, Price GD, Stuart JA (2002) Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction. J Appl Crystallogr 35:291–295

    Article  Google Scholar 

Download references

Acknowledgments

KSK is grateful to Dr A Lindsey-Scott (University College, London) for discussions concerning the likelihood of RbCaF3 to undergo the perovskite–post-perovskite phase transition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Knight.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, K.S., Marshall, W.G. & Hawkins, P.M. A high-pressure neutron diffraction study of the ferroelastic phase transition in RbCaF3 . Phys Chem Minerals 41, 461–472 (2014). https://doi.org/10.1007/s00269-014-0663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0663-3

Keywords

Navigation