Skip to main content
Log in

Thermodynamic properties of synthetic calcium-free carbonate cancrinite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Calcium-free carbonate cancrinite with formula unit Na8.28[Al5.93Si6.07O24](CO3)0.93(OH)0.49·3.64H2O (CAN) has been synthesized under hydrothermal conditions. The product has been characterized by the methods of scanning electronic microscopy and energy dispersive X-ray analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis with FTIR of evolved gases (TGA–FTIR), and X-ray powder diffraction. The heat capacity of CAN has been measured from 6 to 259 K via low-temperature adiabatic calorimetry. A linear combination of Einstein functions has been used to approximate the obtained data on the heat capacity. The thermal contributions to the entropy and enthalpy of CAN in the temperature range 0–300 K have been calculated from these data. The heat capacity and third-law absolute entropy of CAN at 298.15 K are 1,047 ± 30 and 1,057 ± 35 J mol−1 K−1, respectively. High-temperature oxide-melt solution calorimetry has been used to determine the enthalpy of formation from elements of CAN at 298.15 K; the value equals −14,684 ± 50 kJ mol−1. The Gibbs energy of formation from elements at 298.15 K has been calculated and totaled −13,690 ± 51 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballirano P, Maras A (2004) The crystal structure of a “disordered” cancrinite. Eur J Mineral 16:135–141

    Article  Google Scholar 

  • Barrer RM, Cole JF and Villinger H (1970) Chemistry of soil minerals. Part VII. Synthesis, properties, and crystal structures of salt-filled cancrinites. J Chem Soc A 1523–1531

  • Bonaccorsi E, Merlino S (2005) Modular microporous minerals: cancrinite-davyne group and C–S–H phases. Rev Mineral Geochem 57:241–290

    Article  Google Scholar 

  • Breck D (1976) Zeolite molecular sieves (in rus.). Mir, Moscow

  • Bresciani-Pahor N, Calligaris M, Nardin G, Randaccio L (1982) Structure of a basic cancrinite. Acta Crystallogr B38:893–895

    Article  Google Scholar 

  • Buhl JCh (1991) Synthesis and characterization of basic and non-basic members of the cancrinite-natrodavyne family. Thermochim Acta 178:19–31

    Article  Google Scholar 

  • Della Ventura G, Gatta GD, Redhammer GJ, Bellatreccia F, Loose A, Parodi GC (2009) Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Phys Chem Miner 36:193–206

    Article  Google Scholar 

  • Emiraliyev A, Yamzin II (1982) Refinement of the carbonate cancrinite structure from neutron diffraction data. Kristallografiya 27:51–55

    Google Scholar 

  • Galitskii VY, Grechushnikov BN, Sokolov YA (1978) Mode of water detection in cancrinite. Zh Neorg Khim 23:3152–3154

    Google Scholar 

  • Gräfe M, Klauber C (2011) Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108:46–59

    Article  Google Scholar 

  • Grundy HD, Hassan I (1982) The crystal structure of a carbonate-rich cancrinite. Can Mineral 20:239–251

    Google Scholar 

  • Hackbarth K, Gesing ThM, Fechtelkord M, Stief F, Buhl JCh (1999) Synthesis and crystal structure of carbonate cancrinite Na8[AlSiO4]6CO3(H2O)3.4, grown under low-temperature hydrothermal conditions. Microporous Mesoporous Mater 30:347–358

    Article  Google Scholar 

  • Hassan I, Grundy HD (1991) The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24](OH)2·3H2O. Can Mineral 29:377–383

    Google Scholar 

  • Hermeler G, Buhl JCh, Hoffmann W (1991) The influence of carbonate on the synthesis of an intermediate phase between sodalite and cancrinite. Catal Today 8:415–426

    Article  Google Scholar 

  • Jarchow O (1965) Atomanordnung und Strukturverfeinerung von cancrinite. Z Krist 122:407–422

    Article  Google Scholar 

  • Kanepit VN, Rieder EE (1995) Neutron diffraction study of cancrinite. J Struct Chem 36:694–696

    Article  Google Scholar 

  • Kenyon NJ, Weller MT (2003) The effect of calcium on phase formation in the sodium aluminium silicate carbonate system and the structure of NaCaSiO3OH. Microporous Mesoporous Mater 59:185–194

    Article  Google Scholar 

  • Khomyakov AP, Camara F, Sokolova E (2010) Carbobystrite, Na8[Al6Si6O24](CO3)·4H2O, a new cancrinite-group mineral species from the Khibina alkaline massif, Kola peninsula, Russia: description and crystal structure. Can Mineral 48:291–300

    Article  Google Scholar 

  • Kiseleva IA, Ogorodova LP, Topor ND, Chigareva OG (1979) Thermochemical study of CaO–MgO–SiO2 system. Geokhimiya 12:1811–1825

    Google Scholar 

  • Kiseleva IA, Navrotsky A, Belitsky IA, Fursenko BA (2001) Thermochemical study of calcium zeolites—heulandite and stilbite. Am Mineral 86:448–455

    Google Scholar 

  • Kosova TV and Dem’yanets LN (1977) The Na2O–Al2O3–SiO2–H2O system. Synthesis and stability of hydrocancrinite in NaOH solutions at temperatures 200–400°C. In: Crystal growth from high-temperature aqueous solutions (in rus.). Nauka, Moscow, pp 19–42

  • Liu QY, Navrotsky A, Jove-Colon CF, Bonhomme F (2007) Energetics of cancrinite: effect of salt inclusion. Microporous Mesoporous Mater 98:227–233

    Article  Google Scholar 

  • Malyshev VM, Milner GA, Sorkin EL, Shibakin VF (1985) Automatic low-temperature calorimeter. Instrum Exp Tech 28:1456–1459

    Google Scholar 

  • Ogorodova LP, Mel’chakova LV, Kiseleva IA, Belitsky IA (2003) Thermochemical study of natural pollucite. Thermochim Acta 403:251–256

    Article  Google Scholar 

  • Ogorodova LP, Mel’chakova LV, Vigasina MF, Olysich LV, Pekov IV (2009) Cancrinite and cancrisilite in the Khibina–Lovozero alkaline complex: thermochemical and thermal data. Geochem Int 47:260–267

    Article  Google Scholar 

  • Ogorodova LP, Kiseleva IA, Mel’chakova LV, Vigasina MF, Spiridonov EM (2011) Calorimetric determination of the enthalpy of formation for pyrophyllite. Rus J Phys Chem A 85:1492–1494

    Article  Google Scholar 

  • Pauling L (1930) The structure of some sodium and calcium aluminosilicates. Proc Natl Acad Sci USA 16:453–459

    Article  Google Scholar 

  • Phoenix R, Nuffield EW (1949) Cancrinite from Blue Mountain, Ontario. Am Mineral 24:452–455

    Google Scholar 

  • Rastsvetaeva RK, Pekov IV, Chukanov NV, Rozenberg KA, Olysych LV (2007) Crystal structures of low-symmetry cancrinite and cancrisilite varieties. Crystallogr Rep 52:840–846

    Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Gov Printing Office, Washington

    Google Scholar 

  • Sirbescu M, Jenkins DM (1999) Experiments on the stability of cancrinite in the system Na2O–CaO–Al2O3–SiO2–CO2–H2O. Am Mineral 84:1850–1860

    Google Scholar 

  • Smolin YI, Shepelev YF, Butikova IK, Kobyakov IB (1981) The crystal structure of cancrinite. Kristallografiya 26:63–66

    Google Scholar 

  • Stevens R, Boerio-Goates J (2004) A heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry. J Chem Thermodyn 36:857–863

    Article  Google Scholar 

  • Varushenko RM, Druzhinina AI, Sorkin EL (1997) Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn 29:623–637

    Article  Google Scholar 

  • Voronin GF, Kutsenok IB (2013) Universal method for approximating the standard thermodynamic functions of solids. J Chem Eng Data 58:2083–2094

    Article  Google Scholar 

  • Xu B, Smith PG, Wingate C, De Silve L (2010) The effect of calcium and temperature on the transformation of sodalite to cancrinite in Bayer digestion. Hydrometallurgy 105:75–81

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Gennady F. Voronin for critical comments and discussion of the work. The authors acknowledge support from Lomonosov MSU Program of Development and RFBR Grant Number 13-03-00328a. The investigation is performed at User Facilities Center of Lomonosov MSU (Contract Number 16.552.11.7081 on 11 July 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Grishchenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdakova, S.V., Grishchenko, R.O., Druzhinina, A.I. et al. Thermodynamic properties of synthetic calcium-free carbonate cancrinite. Phys Chem Minerals 41, 75–83 (2014). https://doi.org/10.1007/s00269-013-0625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0625-1

Keywords

Navigation