Skip to main content
Log in

Thermodynamic Properties of Montecellite

  • SHORT COMMUNICATIONS
  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A thermochemical study of natural calcium and magnesium orthosilicate monticellite (Ca1.00Mg0.95\({\text{Fe}}_{{0.05}}^{{2 + }}\))[SiO4] from the Khabarovsk Territory, Russia, was carried out on a Tian–Calvet microcalorimeter. The enthalpy of formation from elements Δf\(H_{{{\text{el}}}}^{^\circ }\)(298.15 K) = –2238.4 ± 4.5 kJ/mol was determined by high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of theoretical composition of CaMg[SiO4] are calculated: Δf\(H_{{{\text{el}}}}^{^\circ }\)(298.15 K) = –2248.4 ± 4.5 kJ/mol and Δf\(G_{{{\text{el}}}}^{^\circ }\)(298.15 K) = –2130.5 ± 4.5 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. E. Adams and F. C. Bishop, “An experimental investigation of thermodynamic mixing properties and unit–cell parameters of forsterite–monticellite solid solutions,” Am. Mineral. 70, 714–722 (1985).

    Google Scholar 

  2. C. Brousse, R. C. Newton, and O. J. Kleppa, “Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry,” Geochim. Cosmochim. Acta 48, 1081–1088 (1984).

    Article  Google Scholar 

  3. A. Chopelas, “Single crystal Raman spectra of forsterite, fayalite, and monticellite,” Am. Mineral. 76, 1101–1109 (1991).

    Google Scholar 

  4. N. V. Chukanov, Infrared Spectra of Mineral Species: Exte-nded Library (Springer–Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014).

    Book  Google Scholar 

  5. D. A. Duke and J. D. Stephens, “Infrared investigations of the olivine group minerals,” Am. Mineral. 49, 1388–1406 (1964).

    Google Scholar 

  6. W. P. Griffith, “Raman studies on rock–forming minerals. Part I. Orthosilicates and cyclosilicates,” J. Chem. Soc. (A), 1372–1377 (1969).

  7. M. Handke, K. Kosinsky, and P. Tarte, “Vibrational spectra and force constants calculations of the isotopic species of MgCaSiO4,” J. Mol. Struct. 115, 401–404 (1984).

    Article  Google Scholar 

  8. T. J. B. Holland, “Dependence of entropy on volume for silicate and oxide minerals review and a predictive model,” Am. Mineral. 74, 5–13 (1989).

    Google Scholar 

  9. T. J. B. Holland, and R. Powell, “An enlarged an updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2,” J. Metamorph. Geol. 8, 89–124 (1990).

    Article  Google Scholar 

  10. T. J. B. Holland and R. Powell, “An inrernally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  11. T. J. B. Holland and R. Powell, “An improved and extended inrernally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  12. I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  13. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  14. L. Liu, “The high–pressure phase transformations of monticellite and implications for upper mantle mineralogy,” Phys. Earth Planet. Int. 20, 25–29 (1979).

    Article  Google Scholar 

  15. K. Mohanan, S. K. Sharma, and F. C. Bishop, “A Raman spectral study of forsterite–monticellite solid solutions,” Am. Mineral. 78, 115–121 (1993).

    Google Scholar 

  16. T. Mouri, and M. Enami “Raman spectroscopic study of olivine–group minerals,” J. Mineral. Petrol. Sci. 103, 100–104 (2008).

    Article  Google Scholar 

  17. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, Reference Book on Thermodynamic Valyes (For Geologists) (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  18. A. Navrotsky, and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).

    Article  Google Scholar 

  19. S. N. Nenasheva and A. A. Agakhanov, “New Data on Minerals from the Shishim Mine, Shishim Mounts, South Urals, Russia,” New Data on Minerals 51, 45–52 (2016).

    Google Scholar 

  20. K. J. Neuvonen, “Heat of formation of merwinite and monticellite,” Am. J. Sci. (Bowen Vol.), 373–380 (1952).

  21. H. Onken,“Verfeinerung der kristallstruktur von monticellit,“ Tscher. Miner. Petrog.10 (1–4), 34–44 (1965).

    Article  Google Scholar 

  22. T. Pilati, F. Demartin, and C. M. Gramaccioli, “Thermal parameters for minerals of the olivine group: their implication on vibrational spectra, thermodynamic functions and transferable force fields,” Acta Crystallogr. B51, 721–733 (1995).

    Article  Google Scholar 

  23. B. Piriou and P. McMilan, “The high–frequency vibrational spectra of vitreous and crystalline orthosilicates,” Am. Mineral. 68, 426–443 (1983).

    Google Scholar 

  24. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1995).

  25. R. A. Robie, B. S. Hemingway, and J. R Fisher, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 1452, (1978).

  26. RRUFF Database of Raman Spectroscopy, X–ray Diffraction and Chemistry of Minerals. http://www.rruff. info/

  27. Z. D. Sharp, E. J. Essene, L. M. Anovitz, G. W. Metz, E. F. Westrum, Jr., B. S. Hemingway, and J. W. Valley, “The heat capacity of a natural monticellite and phase equilibria in the system CaO–MgO–SiO2–CO2,” Geochim. Cosmochim. Acta 50, 1475–1484 (1986).

    Article  Google Scholar 

  28. Z. D. Sharp R. M. Hazen, and L. W. Finger, “High–pressure crystal chemistry of monticellite, CaMgSiO4,” Am. Mineral. 72, 748–755 (1987).

    Google Scholar 

  29. Yu.V. Shvarov, “HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by Windows”, Geochemistry International 46, 834–839 (2008).

    Article  Google Scholar 

  30. V. I. Sinyakov and N. M. Sinyakova, Monticellite skarns of Gornaya Shoria, Zap. Vsesoyuz. Mineral. O-va, No. 6, 720–727 (1961).

    Google Scholar 

  31. K. A. Subbotin, L. D. Iskhakova, E. V. Zharikov, and S. V. Lavrishchev, “Investigation of the crystallization features, atomic structure, and microstructure of chromium–doped monticellite,” Crystallogr. Rep. 53 (7), 1107–1111 (2008).

    Article  Google Scholar 

  32. R. D. Warner, and W. C. Luth, “Two–phase data for the join montichellite (CaMgSiO4)–forsterite (Mg2SiO4): experimental results and numerical analysis,” Am. Mineral. 58, 998–1008 (1973).

    Google Scholar 

  33. V. A. Zharikov, K. I. Shmulovich, and V. K. Bulatov, “Experimental studies in the system CaO–MgO–Al2O3–SiO2–CO2–H2O and conditions of high-temperature metamorphism,” Tectonophysics 43, 145–162 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Gritsenko, Y.D., Vigasina, M.F. et al. Thermodynamic Properties of Montecellite. Geochem. Int. 57, 1343–1348 (2019). https://doi.org/10.1134/S0016702919120085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919120085

Keywords:

Navigation