Skip to main content
Log in

Laboratory parallel-beam transmission X-ray powder diffraction investigation of the thermal behavior of nitratine NaNO3: spontaneous strain and structure evolution

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Present work provides in-situ structural data at a fine temperature scale from RT to the melting point of nitratine, NaNO3. From the analysis of log e 33 versus log t plots, it is possible to prove that an univocal indication on the R \( \overline{3} \) c (low temperature, LT) → R \( \overline{3} \) m (high temperature, HT) transition mechanism cannot be obtained because of the relevant role played by the arbitrary assumptions required for defining the c 0 dependence from temperature of the HT phase. This is due to the occurrence of excess thermal expansion for the HT phase. A significantly better fit for an Ising-spin structural model over a non-Ising rigid-body one has been obtained for the LT phase. Moreover, the Ising model led to a smooth variation of the oxygen site x fractional coordinate throughout the transition. The structure of the HT polymorph has been successfully refined considering an oxygen site at x, 0, ½, with 50% occupancy. Such model was the only acceptable one from the crystal chemical point of view as the alternative model (oxygen site at x, y, z with 25% occupancy) led to unrealistically aplanar \( {\text{NO}}_{3}^{ - } \) groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antao SM, Hassan I, Mulder WH, Lee PL (2008) The R \( \overline{3} \)c → R \( \overline{3} \)m transition in nitratine, NaNO3, and implications for calcite, CaCO3. Phys Chem Miner 35:545–557

    Article  Google Scholar 

  • Antao SM, Hassan I, Mulder WH, Lee PL, Toby BH (2009) In situ study of the R \( \overline{3} \)c → R \( \overline{3} \)m orientational disorder in calcite. Phys Chem Miner 36:159–169

    Article  Google Scholar 

  • Balić-Žunic T, Vickovic I (1996) IVTON—program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Crystallogr 29:305–306

    Article  Google Scholar 

  • Ballirano P (2011a) Laboratory parallel-beam transmission X-ray powder diffraction investigation of the thermal behavior of calcite: comparison with X-ray single-crystal and synchrotron powder diffraction data. Period Miner (in press)

  • Ballirano P (2011b) Thermal behaviour of natrite, Na2CO3 in the 303–1013 K thermal range. Phase Transit 84:357–379

    Google Scholar 

  • Ballirano P, Melis E (2007) Thermal behaviour of β-anhydrite CaSO4 to 1,263 K. Phys Chem Miner 34:699–704

    Article  Google Scholar 

  • Bramwell ST, Holdsworth PCW (1993a) Magnetization and universal subcritical behavior in two-dimensional XY magnets. J Phys-Condens Mat 5:L53–L59

    Article  Google Scholar 

  • Bramwell ST, Holdsworth PCW (1993b) Universality in two-dimensional magnetic systems. J Appl Phys 73:6096–6098

    Article  Google Scholar 

  • Brehat F, Wyncke B (1985) Analysis of the temperature-dependent infrared active lattice modes in the ordered phase of sodium nitrate. J Phys C Solid State Phys 18:4247–4259

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Google Scholar 

  • Bruker AXS (2009) Topas V4.2: general profile and structure analysis software for powder diffraction data. Bruker AXS, Karlsruhe

    Google Scholar 

  • Carpenter MA, Salje EKH, Graeme-Barber A (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur J Miner 10:621–691

    Google Scholar 

  • Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121

    Article  Google Scholar 

  • Cherin P, Hamilton WC, Post B (1967) Position and thermal parameters of oxygen atoms in sodium nitrate. Acta Crystallogr 23:455–460

    Article  Google Scholar 

  • Delhez R, de Keijser TH, Langford JI, Louër D, Mittemeijer EJ, Sonneveld EJ (1993) Crystal imperfection broadening and peak shape in the rietveld method. In: Young RA (ed) The rietveld method. Oxford University Press, Oxford, pp 132–166

  • Dove MT, Powell BM (1989) Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1,260 K. Phys Chem Miner 16:503–507

    Article  Google Scholar 

  • Dove MT, Swainson IP, Powell BM, Tennant DC (2005) Neutron powder diffraction study of the orientational order-disorder phase transition in calcite, CaCO3. Phys Chem Miner 32:493–503

    Article  Google Scholar 

  • Downs RT, Gibbs GV, Bartelmehs KL, Boisen MB Jr (1992) Variations of bond lengths and volumes of silicate tetrahedral with temperature. Am Miner 77:751–757

    Google Scholar 

  • Dušek M, Chapuis G, Meyer M, Petříček V (2003) Sodium carbonate revised. Acta Crystallogr B59:337–352

    Google Scholar 

  • Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr 156:233–243

    Article  Google Scholar 

  • Gonschorek W, Schmahl WW, Weitzel H, Miehe G, Fuess H (1995) Anharmonic motion and multipolar expansion of the electron density in NaNO3. Z Kristallogr 210:843–849

    Article  Google Scholar 

  • Gonschorek G, Weitzel H, Miehe G, Fuess H, Schmahl WW (2000) The crystal structures of NaNO3 at 100 K, 120 K, and 563 K. Z Kristallogr 215:752–756

    Article  Google Scholar 

  • Harris MJ (1999) A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaNO3. Am Miner 84:1632–1640

    Google Scholar 

  • Harris MJ, Salje EKH, Güttler BK (1990) An infrared spectroscopic study of the internal modes of sodium nitrate: implications for the structural phase transition. J Phys-Condens Mat 2:5517–5527

    Article  Google Scholar 

  • Jacobs GK, Kemik DM, Krupka KM (1981) The high temperature heat capacity of natural calcite (CaCO3). Phys Chem Miner 7:55–59

    Article  Google Scholar 

  • Jarosch D, Zemann J (1983) On the aplanarity of the nitrate group in inorganic crystals. Monatsh Chem 114:267–272

    Article  Google Scholar 

  • Jriri T, Rogez J, Bergman C, Mathieu JC (1995) Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions. Thermochim Acta 266:147–161

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS—General structure analysis system. Los alamos national laboratory report no. LAUR 86–748. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Lefebvre J, Fouret R, Zeyen CME (1984) Structure determination of sodium nitrate near the order-disorder phase transition. J Phys 45:1317–1327

    Google Scholar 

  • Liu J, Duan C-G, Ossowski MM, Mei WN, Smith RW, Hardy JR (2001) Simulation of structural phase transition in NaNO3 and CaCO3. Phys Chem Miner 28:586–590

    Article  Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Miner 70:590–600

    Google Scholar 

  • Paul GL, Pryor AW (1972) The study of sodium nitrate by neutron diffraction. Acta Crystallogr B27:2700–2702

    Google Scholar 

  • Poon WC-K, Salje E (1988) The excess optical birefringence and phase transition in sodium nitrate. J Phys C Solid State Phys 21:715–729

    Article  Google Scholar 

  • Reeber RR, Goessel K, Wang K (1995) Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K. Eur J Miner 7:1039–1047

    Google Scholar 

  • Reeder RJ, Redfern SAT, Salje E (1988) Spontaneous strain at the structural phase transition in NaNO3. Phys Chem Miner 15:605–611

    Article  Google Scholar 

  • Reinsborough VC, Whetmore FEW (1967) Specific heat of sodium nitrate and silver nitrate by medium high temperature adiabatic calorimetry. Aust J Chem 20:1–8

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Sabine TM, Hunter BA, Sabine WR, Ball CJ (1998) Analytical expressions for the transmission factor and peak shift in absorbing cylindrical specimens. J Appl Crystallogr 31:47–51

    Article  Google Scholar 

  • Schmahl WW, Salje E (1989) X-ray diffraction study of the orientational order/disorder transition in NaNO3: evidence for order parameter coupling. Phys Chem Miner 16:790–798

    Article  Google Scholar 

  • Swainson IP, Brown RJC (1997) Refinement of ammonium perrhenate structure using a pseudo-spin model for the ammonium ion orientation. Acta Crystallogr B27:2700–2702

    Google Scholar 

  • Swainson IP, Dove MT, Harris MJ (1998) The phase transitions in calcite and sodium nitrate. Phys B 241–243:397–399

    Google Scholar 

  • Takeuchi Y, Sasaki Y (1992) Elastic properties and thermal expansion of NaNO3 single crystal. J Phys Soc Jpn 61:587–595

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Young RA (1993) Introduction to the rietveld method. In: Young RA (ed) The rietveld method. Oxford University Press, Oxford, pp 1–38

Download references

Acknowledgments

The manuscript benefited from the constructive review of an anonymous referee and Editor A. Kavner. Financial support from Sapienza Università di Roma is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ballirano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,067 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballirano, P. Laboratory parallel-beam transmission X-ray powder diffraction investigation of the thermal behavior of nitratine NaNO3: spontaneous strain and structure evolution. Phys Chem Minerals 38, 531–541 (2011). https://doi.org/10.1007/s00269-011-0425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0425-4

Keywords

Navigation