Skip to main content
Log in

The thermal expansion and crystal structure of mirabilite (Na2SO4·10D2O) from 4.2 to 300 K, determined by time-of-flight neutron powder diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = − 4.143(1) × 10−7 T 3 + 0.00047(2) T2 − 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alietti A (1959) Osservazioni sulla mirabilite di figno e sul solfato di sodio decaidrato. Rend Acc Naz Lincei Ser 8a, 26:689–694

    Google Scholar 

  • Balarew C (2002) Calculation of the free Gibbs energy of phase transitions using solubility data. 1. The system Na2SO4–Na2SeO4–H2O at 15°C: stable and metastable equilibria. Pure Appl Chem 74(10):1793–1800. doi:10.1351/pac200274101793

    Article  Google Scholar 

  • Block EA (1913) Über die schmelzkurven einiger stoffe. Z Phys Chem Stoich Verwandt 82:403–438

    Google Scholar 

  • Braitsch O (1971) Salt deposits, their origin and composition. Springer, New York

    Google Scholar 

  • Brand HEA, Fortes AD, Wood IG, Alfredsson M, Vočadlo L (2006) High-pressure properties of planetary sulfate hydrates determined from interatomic potential calculations. Lunar Planet Sci Conf 37 (abstract #1310), (http://www.lpi.usra.edu/meetings/lpsc2006/pdf/1310.pdf)

  • Brodale GE, Giauque WF (1958) The heat of hydration of sodium sulphate. Low temperature heat capacity and entropy of sodium sulphate decahydrate. J Phys Chem 76(5):737–743. doi:10.1021/j100649a024

    Article  Google Scholar 

  • Brooke HJ (1824) On the crystalline forms of artificial salts. Ann Philos 7:20–22

    Google Scholar 

  • Carlson RW, Calvin W, Dalton JB, Hansen GB, Hudson R, Johnson RE et al (2007) Europa’s surface compositions: what we know, what we would like to know, and how we can find out. EOS Trans Am Geophys Union 88(54), Fall Meeting Suppl (abstract P51E-02)

  • Cocco G (1962) La struttura della mirabilite. Rend Acc Naz Lincei, Ser 8a, 32:690–698 (ICDD entry 01-072-0495)

  • Cocco G, Rossetti V (1959) La cella elementare della mirabilite. Periodico Mineral Roma 28:231–232

    Google Scholar 

  • Colman SM, Kelts KR, Dinter AA (2002) Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy. Sediment Geol 148(1–2):61–78. doi:10.1016/S0037-0738(01)00210-X

    Article  Google Scholar 

  • Dalton JB, Prieto-Ballesteros O, Kargel JS, Jamieson CS, Jolivet J, Quinn R (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177(2):472–490. doi:10.1016/j.icarus.2005.02.023

    Article  Google Scholar 

  • De Coppet L-C (1907) Recherches sur la surfusion et la sursaturation. Ann Chim Phys 8me Sér 10:457–527

    Google Scholar 

  • Dougherty AJ, Hogenboom DL, Kargel JS, Zheng YF (2006) Volumetric and optical studies of high pressure phases of Na2SO4·10H2O with applications to Europa. Lunar Planet Sci Conf 37 (abstract #1732). (http://www.lpi.usra.edu/meetings/lpsc2006/pdf/1732.pdf)

  • Finger LW, Kroecker M, Toby BH (2007) DRAWxtl, an open-source computer program to produce crystal structure drawings. J Appl Cryst 40:188–192. doi:10.1107/S0021889806051557

    Article  Google Scholar 

  • Finney JL (1995) The complimentary use of X-ray and neutron diffraction in the study of crystals. Acta Crystallogr Sect B Struct Sci B 51:447–467. doi:10.1107/S0108768195002734

    Article  Google Scholar 

  • Fortes AD, Wood IG, Grigoriev D, Alfredsson M, Kipfstuhl S, Knight KS et al (2004) No evidence of large-scale proton ordering in Antarctic ice from powder neutron diffraction. J Chem Phys 120(24):11376–11379. doi:10.1063/1.1765099

    Article  Google Scholar 

  • Fortes AD, Wood IG, Vočadlo L, Brand HEA, Grindrod PM, Joy KH, et al. (2006a) The phase behaviour of epsomite (MgSO4·7H2O) to 50 kbar: planetary implications. Lunar Planet. Sci. Conf. 37, abstract #1029 (http://www.lpi.usra.edu/meetings/lpsc2006/pdf/1029.pdf)

  • Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS (2006b) The thermoelastic properties of MgSO4·7D2O (epsomite) from powder neutron diffraction and ab initio simulation. Eur J Min 18(4):449–462. doi:10.1127/0935-1221/2006/0018-0449

    Article  Google Scholar 

  • Fortes AD, Wood IG, Knight KS (2006c) Neutron powder diffraction studies of sulfuric acid hydrates. I: The structure of sulfuric acid hemitriskaidekahydrate, D2SO4·6½D2O. J Chem Phys 125(14):144510. doi:10.1063/1.2356860

    Article  Google Scholar 

  • Fortes AD, Grindrod PM, Trickett SK, Vočadlo L (2007a) Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188(1):139–153. doi:10.1016/j.icarus.2006.11.002

    Article  Google Scholar 

  • Fortes AD, Wood IG, Vočadlo L, Brand HEA, Knight KS (2007b) Crystal structures and thermal expansion of α-MgSO4 and β-MgSO4 from 4.2–300 K by neutron powder diffraction. J Appl Cryst 40(4):761–770. doi:10.1107/S0021889807029937

    Article  Google Scholar 

  • Fortes AD, Wood IG, Vočadlo L, Knight KS (2008a) Neutron diffraction studies of sulfuric acid hydrates. II: The structure, thermal expansion, incompressiblity and polymorphism of sulfuric acid tetrahydrate (D2SO4·4D2O). J Chem Phys 128(6) article 054506 doi:10.1063/1.2827474

  • Fortes AD, Wood IG, Knight KS (2008b) The crystal structure and thermal expansion tensor of MgSO4·11D2O (meridianiite) determined by neutron powder diffraction. Phys Chem Miner 35(4):207–221. doi:10.1007/s00269-008-0214-x

    Google Scholar 

  • Gans W (1978) Thermodynamic stability of sodium sulfate heptahydrate. Z Phys Chem 111(1):39–46

    Google Scholar 

  • Garrett DE (2001) Sodium sulfate: handbook of deposits, processing, properties, and use. Academic Press, London

  • Geller A (1924) Über das verhalten verschiedener minerale der salzlager bei hohen drucken und wechselnden temperaturen. Z Krist 60:415–472

    Google Scholar 

  • Genkinger S, Putnis A (2007) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52:329–337. doi:10.1007/s00254-006-0565-x

    Google Scholar 

  • Glauber JH (1658) Tractatus de natura salium. Amsterdam

  • Goudie AS, Viles H (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  • von Groth P (1908) Chemische Kristallographie, Teil 2: Die anorgischen oxo- und sulfosalze. Leipzig. pp 371–372

  • Hanawalt JD, Rinn HW, Frevel LK (1938) Chemical analysis by X-ray diffraction. Ind Eng Chem Anal Edn 10(9):457–512 (doi:10.1021/ac50125a001) (ICDD entry 00-001-0207)

    Google Scholar 

  • Hardie LA (1991) On the significance of evaporites. Annu Rev Earth Planet Sci 19:131–168. doi:10.1146/annurev.ea.19.050191.001023

    Article  Google Scholar 

  • Hartley H, Jones BM, Hutchinson GA (1908) The spontaneous crystallisation of sodium sulphate solutions. J Chem Soc 93:825–833. doi:10.1039/CT9089300825

    Google Scholar 

  • Hill AE, Wills JH (1938) Ternary systems. XXIV, calcium sulphate, sodium sulphate and water. J Am Chem Soc 60(7):1647–1655. doi:10.1021/ja01274a037

    Article  Google Scholar 

  • Hogenboom DL, Kargel JS, Pahalawatta PV (1999) Densities and phase relationships at high pressures of the sodium sulfate-water system. Lunar Planet Sci Conf 30 (abstract #1793)

  • Ibberson RM, David WIF, Knight KS (1992) The high resolution neutron powder diffractometer (HRPD) at ISIS—a user guide. RAL-92-031. Rutherford Appleton Laboratory, Oxfordshire (http://www.isis.rl.ac.uk/crystallography/documentation/HRPDguide)

  • Kaminsky W (2004) WinTensor 1.1. (http://www.wintensor.com)

  • Kargel JS (1991) Brine volcanism and the interior structure of asteroids and icy satellites. Icarus 94(2):368–390. doi:10.1016/0019-1035(91)90235-L

    Article  Google Scholar 

  • Keys JR, Williams K (1981) Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochim Cosmochim Acta 45(12):2299–2309. doi:10.1016/0016-7037(81)90084-3

    Article  Google Scholar 

  • Kryukov PA, Manikhin VI (1960) Characteristics of the melting of glauber salt at high pressure. Russ Chem Bull 9(12):2077–2078. doi:10.1007/BF00912067

    Article  Google Scholar 

  • Larsen AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, New Mexico (http://www.ncnr.nist.gov/xtal/software/gsas.html)

  • Levy HA, Lisensky GC (1978) Crystal structures of sodium sulfate decahydrate (Glauber’s salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Cryst Sect B Struct Sci 34:3502–3510. doi:10.1107/S0567740878011504 (ICDD entry 01-075-1077)

    Google Scholar 

  • Löwel H (1850) Observations sur la sursaturation des dissolution salines. Premier mémoire. Ann Chim Phys 3me Sé 29:62–127

    Google Scholar 

  • Löwel H (1851) Observations sur la sursaturation des dissolution salines. Deuxième mémoire. Ann Chim Phys 3me Sér 33:334–390

    Google Scholar 

  • Löwel H (1853) Observations sur la sursaturation des dissolution salines. Troisième mémoire. Ann Chim Phys 3me Sér 37:155–179

    Google Scholar 

  • Löwel H (1857) Observations sur la sursaturation des dissolution salines. Sixième mémoire. Ann Chim Phys 3me Sér 49:32–57

    Google Scholar 

  • Marliacy P, Solimando R, Bouroukba M, Schuffenecker L (2000) Thermodynamics of crystallization of sodium sulfate decahydrate in H2O–NaCl–Na2SO4: application to Na2SO4·10H2O-based latent heat storage materials. Thermochim Acta 344(1–2):85–94. doi:10.1016/S0040-6031(99)00331-7

    Article  Google Scholar 

  • Negi AS, Anand SC (1985) A textbook of physical chemistry. New Age Publishers, Watertown

  • Orlando TM, McCord TB, Grieves GA (2005) The chemical nature of Europa’s surface material and the relation to a subsurface ocean. Icarus 177(2):528–533. doi:10.1016/j.icarus.2005.05.009

    Article  Google Scholar 

  • Palache C, Berman H, Frondel C (1951) Dana’s system of mineralogy. 7th edn, vol II, pp 439–442

  • Pitzer KS, Coulter LV (1938) The heat capacities, entropies, and heats of solution of anhydrous sodium sulfate and of sodium sulfate decahydrate. The application of the third law of thermodynamics to hydrated crystals. J Am Chem Soc 60(6):1310–1313. doi:10.1021/ja01273a010

    Article  Google Scholar 

  • Rasmussen SE, Jorgensen JE, Lundtoft B (1996) Structures and phase transitions of Na2SO4. J Appl Cryst 29(1):42–47. doi:10.1107/S0021889895008818

    Article  Google Scholar 

  • Rijniers LA, Huinink HP, Pel L, Kopinga K (2005) Experimental evidence of crystallisation pressure inside porous media. Phys Rev Lett 94:075503. doi:10.1103/PhysRevLett.94.075503

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570. doi:10.1126/science.172.3983.567

    Article  Google Scholar 

  • Rosicky V (1908) Beiträge zur morphologie der glaubersalzreihe. Z Krist 45:473–489

    Google Scholar 

  • Röttger K, Endriss A, Ihringer J (1994) Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr B 50:644–648. doi:10.1107/S0108768194004933

    Article  Google Scholar 

  • Ruben HW, Templeton DH, Rosenstein RD, Olovsson I (1961) Crystal structure and entropy of sodium sulfate decahydrate. J Am Chem Soc 83(4):820–824. doi:10.1021/ja01465a019 (ICDD entry 01-074-0937)

    Google Scholar 

  • Schofield PF, Knight KS (2000) Neutron powder diffraction studies of the thermal behaviour of deuterated chalcanthite. Physica B 276–278:897–898. doi:10.1016/S0921-4526(99)01282-X

    Article  Google Scholar 

  • Schlenker JL, Gibbs GV, Boison MB (1975) Thermal expansion coefficients for monoclinic crystals: a phenomenological approach. Am Min 60:823–833

    Google Scholar 

  • Schofield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31(9):606–624. doi:10.1007/s00269-004-0419-6

    Article  Google Scholar 

  • Tammann G (1929) Über die schmelzkurven einiger salzhydrate. Z Anorg Allg Chem 179(1):186–192. doi:10.1002/zaac.19291790114

    Article  Google Scholar 

  • Tanaka Y, Hada S, Makita T, Moritoki M (1992) Effect of pressure on the solid–liquid phase equilibria in (water + sodium sulphate) system. Fluid Phase Equil 76:163–173. doi:10.1016/0378-3812(92)85085-M

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213. doi:10.1107/S0021889801002242

    Article  Google Scholar 

  • Tomlinson C (1868) On supersaturated saline solutions. Philos Trans R Soc Lond 158:659–673. doi:10.1098/rstl.1868.0028

    Article  Google Scholar 

  • Tomlinson C (1871) On the behaviour of supersaturated saline solutions when exposed to the open air. Proc R Soc Lond 20:41–45. doi:10.1098/rspl.1871.0013

    Article  Google Scholar 

  • Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulphate. J Cult Herit 4:109–115. doi:10.1016/S1296-2074(03)00022-0

    Article  Google Scholar 

  • Viollette C (1866) Mémoire sur la sursaturation. Ann Sci Ecole Normale Super 30:202–252

    Google Scholar 

  • Vočadlo L, Knight KS, Price GD, Wood IG (2002) Thermal expansion and crystal structure of FeSi between 4 K and 1173 K determined by time of flight neutron powder diffraction. Phys Chem Miner 29(2):132–139. doi:10.1007/s002690100202

    Article  Google Scholar 

  • Wallace DG (1998) Thermodynamics of crystals. Dover, New York

    Google Scholar 

  • Washburn ER, Clem WJ (1938) The transition temperature of sodium sulfate heptahydrate. J Am Chem Soc 60:754–757. doi:10.1012/ja01271a007

    Google Scholar 

  • Wood IG, Knight KS, Price GD, Stuart JA (2002) Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high resolution neutron powder diffraction. J Appl Cryst 35:291–295. doi:10.1107/S0021889802002273

    Article  Google Scholar 

  • Wuite JP (1914) The sodium sulphate–water system. Z Phys Chem Stoich Verwandt 86:349–382

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the STFC ISIS facility for beam time, and technical support staff for invaluable assistance. HEAB is funded by a postgraduate studentship from the Natural Environment Research Council; ADF is funded by the Science and Technology Facilities Council (STFC), UK, grant numbers PPA/P/S/2003/00247 and PP/E006515/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. A. Brand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, H.E.A., Fortes, A.D., Wood, I.G. et al. The thermal expansion and crystal structure of mirabilite (Na2SO4·10D2O) from 4.2 to 300 K, determined by time-of-flight neutron powder diffraction. Phys Chem Minerals 36, 29–46 (2009). https://doi.org/10.1007/s00269-008-0256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0256-0

Keywords

Navigation