Skip to main content

Advertisement

Log in

Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The single-crystal elastic constants of natural alunite (ideally KAl3(SO4)2(OH)6) were determined by Brillouin spectroscopy. Chemical analysis by electron microprobe gave a formula KAl3(SO4)2(OH)6. Single crystal X-ray diffraction refinement with R 1 = 0.0299 for the unique observed reflections (|F o| > 4σ F) and wR 2 = 0.0698 for all data gave a = 6.9741(3) Å, c = 17.190(2) Å, fractional positions and thermal factors for all atoms. The elastic constants (in GPa), obtained by fitting the spectroscopic data, are C 11 = 181.9 ± 0.3, C 33 = 66.8 ± 0.8, C 44 = 42.8 ± 0.2, C 12 = 48.2 ± 0.5, C 13 = 27.1 ± 1.0, C 14 = 5.4 ± 0.5, and C 66 = ½(C 11C 12) = 66.9 ± 0.3 GPa. The VRH averages of bulk and shear modulus are 63 and 49 GPa, respectively. The aggregate Poisson ratio is 0.19. The high value of the ratio C 11/C 33 = 2.7 and of the ratio C 66/C 44 = 1.6 are characteristic of an anisotropic structure with very weak interlayer interactions along the c-axis. The basal plane (001) is characterized by 0.1% longitudinal acoustic anisotropy and 0.9–1.1% shear acoustic anisotropy, which gives alunite a characteristic pseudo-hexagonal elastic behavior, and is related to the pseudo-hexagonal arrangement of the Al(O,OH)6 octahedra in the basal layer. The elastic Debye temperature of alunite is 654 K. The large discrepancy between the elastic and heat capacity Debye temperature is also a consequence of the layered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson OL (1963) A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids 24:909–917

    Article  Google Scholar 

  • Auld B (1973) Acoustic fields and waves in solids, vol. 1. Wiley, New York

  • Becker U, Gasharova B (2001) AFM observations and simulations of jarosite growth at the molecular scale: probing the basis for the incorporation of foreign ions into jarosite as a storage mineral. Phys Chem Miner 28:545–556

    Article  Google Scholar 

  • Blakslee OL, Proctor DG, Seldin EJ, Spence GB, Weng T (1970) Elastic constants of compression-annealed pyrolytic graphite. J Appl Phys 41:3373–3382

    Article  Google Scholar 

  • Blaney DL, McCord TB (1995) Indications of sulfate minerals in the Martian soil from Earth-based spectroscopy. J Geophys Res-Planet 100(E7):14433–14441

    Article  Google Scholar 

  • Blowes DW, Jambor JL, Hanton-Fong CJ, Lortie L, Gould WD (1998) Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Quebec. Appl Geochem 13:687–705

    Article  Google Scholar 

  • Cravotta CA III, Brady KBC, Rose AW, Douds JB (1999) Frequency distribution of the pH of coal-mine drainage in Pennsylvania. In: Morganwalp DW, Buxton H (eds) U.S. geological survey toxic substances hydrology program- proc technical meeting. US Geol Surv, Water-Res Invest Rep 99-4018A, pp 313–324

  • Every AG (1980) General closed-form expressions for acoustic waves in elastically anisotropic solid. Phys Rev B 22:1746–1760

    Article  Google Scholar 

  • Gale JD (1997) GULP: a computer program for the symmetry adapted simulation. J Chem Soc Faraday Trans 93:629–637

    Article  Google Scholar 

  • Hemingway BS, Robie RA (1994) Heat capacity and enthalpy of formation of synthetic alunite. US Geol Surv Open-file Rep 94-688, 8 pp

  • Hendricks SB (1937) The crystal structure of alunite and the jarosites. Am Mineral 22:773–784

    Google Scholar 

  • Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl Geochem 14:1015–1030

    Article  Google Scholar 

  • Ibers JA, Hamilton WC (eds) (1974) International tables for X-ray crystallography. IV revised and supplementary tables, vol. 4. The Kynoch Press, Birmingham, UK

  • Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40:303–350

    Google Scholar 

  • Jiang FM, Speziale S, Duffy TS (2004) Single-crystal elasticity of grossular- and almandine-rich garnets to 11 GPa by Brillouin scattering. J Geophys Res-Sol Ea 109:B10210

    Article  Google Scholar 

  • Kieffer SW (1979) Thermodynamics and lattice-vibrations of minerals. 1. Mineral heat-capacities and their relationships to simple lattice vibrational models. Rev Geophys 17:1–19

    Google Scholar 

  • Klingelhofer G, Morris RV, Bernhardt B, Schroder C, Rodionov DS, de Souza PA, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gutlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745

    Article  Google Scholar 

  • Larson AC, von Dreele RB (1994) GSAS. General structure analysis system. LANSCE, MS-H805, Los Alamos, NM

    Google Scholar 

  • Lindsay SM, Anderson MW, Sandercock JR (1981) Construction and alignment of a high-performance multipass Vernier tandem Fabry-Perot interferometer. Rev Sci Instrum 52:1478–1486

    Article  Google Scholar 

  • McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292:1523–1525

    Article  Google Scholar 

  • McNeil LE, Grimsditch M (1991) Elastic-constants of As2S3. Phys Rev B 44:4174–4177

    Article  Google Scholar 

  • McNeil LE, Grimsditch M (1993) Elastic moduli of muscovite mica. J Phys Condens Matter 5:1681–1690

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals. Their representation by tensors and matrices. Oxford Science Publications, Oxford, p 329

    Google Scholar 

  • Ozkan H (1979) Elastic constants of tourmaline. J Appl Phys 50:6006–6007

    Article  Google Scholar 

  • Schukow H, Breitinger DK, Zeiske T, Kubanek F, Mohr J, Schwab RG (1999) Localization of hydrogen and content of oxonium cations in alunite via neutron diffraction. Z Anorg Allg Chem 625:1047–1050

    Article  Google Scholar 

  • Speziale S, Duffy TS (2002) Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys Chem Miner 29:465–472

    Article  Google Scholar 

  • Stoffregen RE, Alpers CN (1992) Observations on the unit cell parameters, water contents and δD of natural and synthetic alunites. Am Mineral 77:1092–1098

    Google Scholar 

  • Stoffregen RE, Alpers CN, Jambor JL (2000) Alunite-jarosite crystallography, thermodynamics, and geochronology. Rev Mineral Geochem 40:454–480

    Google Scholar 

  • Stretton IC, Schofield PF, Hull S, Knight KS (1997) The static compressibility of gypsum. Geophys Res Lett 24:1267–1270

    Article  Google Scholar 

  • Zolotov MY, Shock EL (2001) Composition and stability of salts on the surface of Europa and their oceanic origin. J Geophys Res-Planet 106(E12):32815–32827

    Article  Google Scholar 

  • Xia X, Weidner DJ, Zhao H (1998) Equation of state of brucite: single crystal Brillouin spectroscopy study and polycrystalline pressure-volume-temperature measurement. Am Mineral 83:68–74

    Google Scholar 

Download references

Acknowledgments

We thank M. Rieder for the editorial handling of the manuscript and two anonymous reviewers for their comments and suggestions. J.M. thanks the Hess fellowship at the Department of Geosciences (Princeton U.) for the support. S.S. is supported by the Miller Institute for Basic Research in Science. We thank U. Becker (U. Michigan-Ann Arbor) for providing the input file for jarosite GULP calculations, and D. Ozdín (Comenius U., Bratislava) for the electron microprobe analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Majzlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majzlan, J., Speziale, S., Duffy, T.S. et al. Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6 . Phys Chem Minerals 33, 567–573 (2006). https://doi.org/10.1007/s00269-006-0104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0104-z

Keywords

Navigation