Skip to main content
Log in

Macrophage and T-lymphocyte Infiltrates in Human Peritoneal Adhesions Indicate a Chronic Inflammatory Disease

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Peritoneal adhesions are common and lead to significant clinical morbidity and mortality. Besides various individual factors, notably the inflammatory response to peritoneal defects affects adhesion formation. The aim of this study was to investigate whether there is inflammatory activity even in persistent adhesions.

Methods

Tissue specimens of 40 patients suffering peritoneal adhesions were prospectively collected. Expression profiles of seven parameters as potential mediators in cellular immune response, cell differentiation, and wound healing were analyzed (macrophages [CD68], B-lymphocytes [CD20] and T-lymphocytes [CD45], cyclo-oxygenase-2 [COX-2], Notch-3, β-catenin, and c-myc). Furthermore, clinical details and co-morbidities were recorded.

Results

Infiltrates of mononuclear round cells were found in all adhesion specimens irrespective of the maturity. Immunohistochemical analysis identified mononuclear round cells as macrophages (CD68) and as T-lymphocytes (CD45). Expression of CD68 was significantly elevated in adhesion tissue with an age <12 months. Positive expression of CD45, COX-2, Notch-3, β-catenin, and c-myc, was observed even in long-lasting adhesions.

Conclusions

A persistent inflammatory process has to be considered, even in mature adhesions. Macrophages may play an important role in triggering adhesions, whereas T-cells and the Notch-3/β-catenin complex signaling pathway may play a crucial role in maintaining adhesions. These findings indicate that adhesions should not be regarded simply as an adynamic result of an operative trauma but rather may be grasped as a permanent process in remodeled tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liakakos T, Thomakos N, Fine PM, et al. (2001) Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent advances in prevention and management. Dig Surg 18:260–273

    Article  PubMed  CAS  Google Scholar 

  2. Menzies D, Ellis H (1990) Intestinal obstruction from adhesions—how big is the problem? Ann R Coll Surg Engl 72:60–63

    PubMed  CAS  Google Scholar 

  3. Hammoud A, Gago LA, Diamond MP (2004) Adhesions in patients with chronic pelvic pain: a role for adhesiolysis? Fertil Steril 82:1483–1491

    Article  PubMed  Google Scholar 

  4. Diamond MP, El-Hammady E, Munkarah A, et al. (2005) Modulation of the expression of vascular endothelial growth factor in human fibroblasts. Fertil Steril 83:405–409

    Article  PubMed  CAS  Google Scholar 

  5. Roy S, Clark CJ, Mohebali K, et al. (2004) Reactive oxygen species and EGR-1 gene expression in surgical postoperative peritoneal adhesions. World J Surg 28:316–320

    Article  PubMed  Google Scholar 

  6. Arikan S, Adas G, Barut G, et al. (2005) An evaluation of low molecular weight heparin and hyperbaric oxygen treatment in the prevention of intra-abdominal adhesions and wound healing. Am J Surg 189:155–160

    Article  PubMed  CAS  Google Scholar 

  7. Scott-Coombes D, Whawell S, Vipond MN, et al. (1995) Human intraperitoneal fibrinolytic response to elective surgery. Br J Surg 82:414–417

    Article  PubMed  CAS  Google Scholar 

  8. Jenkins SD, Klamer TW, Parteka JJ, et al. (1983) A comparison of prosthetic materials used to repair abdominal wall defects. Surgery 94:392–398

    PubMed  CAS  Google Scholar 

  9. Conze J, Rosch R, Klinge U, et al. (2004) Polypropylene in the intra-abdominal position: influence of pore size and surface area. Hernia 8:365–372

    Article  PubMed  CAS  Google Scholar 

  10. Operative Laparoscopy Study Group (1991) Postoperative adhesion development after operative laparoscopy: evaluation at early second-look procedures. Fertil Steril 55:700–704

    Google Scholar 

  11. Ellis H (1962) The aetiology of post-operative abdominal adhesions. An experimental study. Br J Surg 50:10–16

    Article  PubMed  CAS  Google Scholar 

  12. Epstein JC, Wilson MS, Wilkosz S, et al. (2006) Human peritoneal adhesions show evidence of tissue remodeling and markers of angiogenesis. Dis Colon Rectum 49:1885–1892

    Article  PubMed  Google Scholar 

  13. Cahill RA, Wang JH, Redmond HP (2007) Enteric bacteria and their antigens may stimulate postoperative peritoneal adhesion formation. Surgery 141:403–410

    Article  PubMed  Google Scholar 

  14. Ito T, Fraser IP, Yeo Y, et al. (2007) Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials 28:1778–1786

    Article  PubMed  CAS  Google Scholar 

  15. Cook AD, Vlahos R, Massa CM, et al. (2006) The effect of tissue type-plasminogen activator deletion and associated fibrin(ogen) deposition on macrophage localization in peritoneal inflammation. Thromb Haemost 95:659–667

    PubMed  CAS  Google Scholar 

  16. Hoshino A, Kawamura YI, Yasuhara M, et al. (2007) Inhibition of CCL1–CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol 178:5296–5304

    PubMed  CAS  Google Scholar 

  17. Alpay Z, Ozgonenel MS, Savasan S, et al. (2006) Possible role of natural immune response against altered fibroblasts in the development of post-operative adhesions. Am J Reprod Immunol 55:420–427

    Article  PubMed  CAS  Google Scholar 

  18. Saed GM, Munkarah AR, bu-Soud HM, et al. (2005) Hypoxia upregulates cyclooxygenase-2 and prostaglandin E2 levels in human peritoneal fibroblasts. Fertil Steril 83(Suppl 1):1216–1219

    Article  PubMed  CAS  Google Scholar 

  19. Saed GM, Munkarah AR, Diamond MP (2003) Cyclooxygenase-2 is expressed in human fibroblasts isolated from intraperitoneal adhesions but not from normal peritoneal tissues. Fertil Steril 79:1404–1408

    Article  PubMed  Google Scholar 

  20. Stojadinovic O, Brem H, Vouthounis C, et al. (2005) Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol 167:59–69

    PubMed  CAS  Google Scholar 

  21. Herrick SE, Mutsaers SE, Ozua P, et al. (2000) Human peritoneal adhesions are highly cellular, innervated, and vascularized. J Pathol 192:67–72

    Article  PubMed  CAS  Google Scholar 

  22. Remmele W, Stegner HE (1987) [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe 8:138–140

    PubMed  CAS  Google Scholar 

  23. Whawell SA, Scott-Coombes DM, Vipond MN, et al. (1994) Tumour necrosis factor-mediated release of plasminogen activator inhibitor 1 by human peritoneal mesothelial cells. Br J Surg 81:214–216

    Article  PubMed  CAS  Google Scholar 

  24. Whawell SA, Vipond MN, Scott-Coombes DM, et al. (1993) Plasminogen activator inhibitor 2 reduces peritoneal fibrinolytic activity in inflammation. Br J Surg 80:107–109

    Article  PubMed  CAS  Google Scholar 

  25. Ellis H, Moran BJ, Thompson JN, et al. (1999) Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. Lancet 353(9163):1476–1480

    Article  PubMed  CAS  Google Scholar 

  26. Jirasek JE, Henzl MR, Uher J (1998) Periovarian peritoneal adhesions in women with endometriosis. Structural patterns. J Reprod Med 43(3 Suppl):276–280

    PubMed  CAS  Google Scholar 

  27. Menzies D (1992) Peritoneal adhesions. Incidence, cause, and prevention. Surg Annu 24( Pt 1):27–45

    PubMed  Google Scholar 

  28. Binnebosel M, Klinge U, Rosch R, et al. (2007) Morphology, quality, and composition in mature human peritoneal adhesions. Langenbecks Arch Surg (in press)

  29. Minghetti L, Polazzi E, Nicolini A, et al. (1997) Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2, cyclic AMP and non-steroidal anti-inflammatory drugs. Eur J Neurosci 9:934–940

    Article  PubMed  CAS  Google Scholar 

  30. Eberhart CE, Coffey RJ, Radhika A, et al. (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188

    PubMed  CAS  Google Scholar 

  31. DuBois RN, Tsujii M, Bishop P, et al. (1994) Cloning and characterization of a growth factor-inducible cyclooxygenase gene from rat intestinal epithelial cells. Am J Physiol 266(5 Pt 1):G822–G827

    PubMed  CAS  Google Scholar 

  32. Tordjman C, Coge F, Andre N, et al. (1995) Characterisation of cyclooxygenase 1 and 2 expression in mouse resident peritoneal macrophages in vitro; interactions of non steroidal anti-inflammatory drugs with COX2. Biochim Biophys Acta 1256:249–256

    PubMed  Google Scholar 

  33. DuBois RN, Awad J, Morrow J, et al. (1994) Regulation of eicosanoid production and mitogenesis in rat intestinal epithelial cells by transforming growth factor-alpha and phorbol ester. J Clin Invest 93:493–498

    Article  PubMed  CAS  Google Scholar 

  34. Siegler AM, Kontopoulos V, Wang CF (1980) Prevention of postoperative adhesions in rabbits with ibuprofen, a nonsteroidal anti-inflammatory agent. Fertil Steril 34:46–49

    PubMed  CAS  Google Scholar 

  35. Cofer KF, Himebaugh KS, Gauvin JM, et al. (1994) Inhibition of adhesion reformation in the rabbit model by meclofenamate: an inhibitor of both prostaglandin and leukotriene production. Fertil Steril 62:1262–1265

    PubMed  CAS  Google Scholar 

  36. Rodgers KE, Girgis W, Campeau JD, et al. (1997) Reduction of adhesion formation by intraperitoneal administration of anti-inflammatory peptide 2. J Invest Surg 10:31–36

    Article  PubMed  CAS  Google Scholar 

  37. Futagami A, Ishizaki M, Fukuda Y, et al. (2002) Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Lab Invest 82:1503–1513

    PubMed  CAS  Google Scholar 

  38. Thaler K, Mack JA, Berho M, et al. (2005) Coincidence of connective tissue growth factor expression with fibrosis and angiogenesis in postoperative peritoneal adhesion formation. Eur Surg Res 37:235–241

    Article  PubMed  CAS  Google Scholar 

  39. Thompson JN, Whawell SA (1995) Pathogenesis and prevention of adhesion formation. Br J Surg 82:3–5

    Article  PubMed  CAS  Google Scholar 

  40. Holmdahl L, Ivarsson ML (1999) The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. Eur J Surg 165:1012–1019

    Article  PubMed  CAS  Google Scholar 

  41. Bergstrom M, Ivarsson ML, Holmdahl L (2002) Peritoneal response to pneumoperitoneum and laparoscopic surgery. Br J Surg 89:1465–1469

    Article  PubMed  CAS  Google Scholar 

  42. Ivarsson ML, Bergstrom M, Eriksson E, et al. (1998) Tissue markers as predictors of postoperative adhesions. Br J Surg 85:1549–1554

    Article  PubMed  CAS  Google Scholar 

  43. Hayward SD, Liu J, Fujimuro M (2006) Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE 335:re4

    Article  Google Scholar 

  44. Rodewald HR (2006) Making a Notch in the lymphocyte kit. Eur J Immunol 36:508–511

    Article  PubMed  CAS  Google Scholar 

  45. Deregowski V, Gazzerro E, Priest L, et al. (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210

    Article  PubMed  CAS  Google Scholar 

  46. Ikawa T, Kawamoto H, Goldrath AW, et al. (2006) E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 203:1329–1342

    Article  PubMed  CAS  Google Scholar 

  47. Schneikert J, Behrens J (2006) The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56:309; Reply 309–310

    Google Scholar 

  48. Luu HH, Zhang R, Haydon RC, et al. (2004) Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets 4:653–671

    Article  PubMed  CAS  Google Scholar 

  49. Dihlmann S, von Knebel DM (2005) Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int J Cancer 113:515–524

    Article  PubMed  CAS  Google Scholar 

  50. Bhatia N, Spiegelman VS (2005) Activation of Wnt/beta-catenin/Tcf signaling in mouse skin carcinogenesis. Mol Carcinog 42:213–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mrs. Ellen Krott for most excellent and careful assistance during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Binnebösel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binnebösel, M., Rosch, R., Junge, K. et al. Macrophage and T-lymphocyte Infiltrates in Human Peritoneal Adhesions Indicate a Chronic Inflammatory Disease. World J Surg 32, 296–304 (2008). https://doi.org/10.1007/s00268-007-9330-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-007-9330-x

Keywords

Navigation