Skip to main content

Advertisement

Log in

Feedbacks in Human–Landscape Systems

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human–landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human–natural systems emphasizing ecological phenomena in producing emerging concepts for social–ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RS, Anderson SP (2011) Geomorphology: the mechanics and chemistry of landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Benda LE, Poff NL, Tague C, Palmer MA, Pizzuto J, Cooper S, Stanley E, Moglen G (2002) How to avoid train wrecks when using science in environmental problem solving. Bioscience 52:1127–1136

    Article  Google Scholar 

  • Bennett RJ, Chorley RJ (1978) Environmental systems: philosophy, analysis and control. Methuen, London

    Google Scholar 

  • Bergametti G, Gillette DA (2010) Aeolian sediment fluxes measured over various plant/soil complexes in the Chihuahuan desert. J Geophys Res 115:F03044. doi:10.1029/2009JF001543

    Google Scholar 

  • Bogaert P, Fasbender D (2007) Bayesian data fusion in a spatial prediction context: a general formulation. Stoch Env Res Risk Assess 21:695–709. doi:10.1007/s00477-006-0080-3

    Article  Google Scholar 

  • Büdel J (1982) Climatic geomorphology. Princeton University Press, Princeton. Translation of Budel J (1977) Klima-geomorphologie. Gebruder Borntraeger, Berlin

  • Bull WB (1991) Geomorphic responses to climate change. Oxford University Press, New York

    Google Scholar 

  • Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift, and threshold hillslopes in the northwestern Himalaya. Nature 379:505–510

    Article  CAS  Google Scholar 

  • Caers J (2011) Modeling uncertainty in the Earth Sciences, 1st edn. Wiley–Blackwell, Chichester

    Book  Google Scholar 

  • Chapin FS III, Hoel M, Carpenter SR, Lubchenco J, Walker B, Callaghan TV, Folke C, Levin SA, Mäler K-G, Nilsson C, Barrett S, Berkes F, Crépin A-S, Danell K, Rosswall T, Starrett D, Xepapadeas A, Zimov SA (2006) Building resilience and adaptation to manage Arctic change. Ambio 35:198–202

    Article  Google Scholar 

  • Chen J, Zhang DD, Wang S, Xiao T, Huang R (2004) Factors controlling tufa deposition in natural waters at waterfall sites. Sed Geol 166:353–366

    Article  CAS  Google Scholar 

  • Chin A, English M, Fu R, Galvin K, Gerlak A, Harden C, McDowell P, McNamara D, Peterson J, Poff L, Rosa E, Solecki W, Wohl E (2010) Landscapes in the Anthropocene: exploring the human connections. A NSF workshop held at the University of Oregon, Eugene, Oregon, 4–6 March 2010. Summary Report. http://clas.ucdenver.edu/ges/landscapes/. Accessed 10 Feb 2012

  • Chorley RJ (1962) Geomorphology and general systems theory. USGS Professional Paper 500-B. United States Government Printing Office, Washington

    Google Scholar 

  • Chorley RJ, Kennedy BA (1971) Physical geography: a systems approach. Prentice-Hall International, London

    Google Scholar 

  • Claquin T, Roelandt C, Kohfeld KE, Harrison SP, Tegen I, Prentice IC, Balkanski Y, Bergametti G, Hansson M, Mahowald N, Rodhe H, Schulz M (2003) Radiative forcing of climate by ice-age atmospheric dust. Clim Dyn 20:193–202

    Google Scholar 

  • Clark CW (2010) Mathematical bioeconomics: the optimal management of renewable resources. Wiley, New York

    Google Scholar 

  • Clayton J (2009) Market-driven solutions to economic, environmental, and social issues related to water management in the western USA. Water 1:19–31

    Article  Google Scholar 

  • Collins BD, Montgomery DR, Fetherston KL, Abbe TB (2012) The floodplain large-wood cycle hypothesis: a mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology 139–140:460–470. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Cook BI, Miller RL, Seager R (2009) Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc Nat Acad Sci 106(13):4997–5001

    Google Scholar 

  • Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86

    Article  Google Scholar 

  • Corenblit D, Baas ACW, Bornette G, Darrozes J, Delmotte S, Francis RA, Gurnell AM, Julien F, Naiman RJ, Steiger J (2011) Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth Sci Rev 106:307–331

    Article  Google Scholar 

  • Cotton CA (1942) Climatic accidents in landscape making. Wiley, New York

    Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “Anthropocene”. IGBP Newsl 41:17–18

    Google Scholar 

  • Dearing JA, Battarbee RW, Dikau R, Larocque I, Oldfield F (2006) Human–environment interactions: towards synthesis and simulation. Reg Environ Chang 6:115–123. doi:10.1007/s10113-005-0012-7

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 501–568

    Google Scholar 

  • Dettinger MD, Ingram BL (2013) The coming megaflods. Sci Am 308(1):64–71

    Article  Google Scholar 

  • Dietrich WE, Gallinatti J (1991) Fluvial geomorphology. In: Slaymaker O (ed) Field experiments and measurement programs in geomorphology. Balkema, Rotterdam, pp 169–229

    Google Scholar 

  • Dietz T, Ostrom E, Paul C, Stern PC (2003) The struggle to govern the commons. Science 302:1907–1912. doi:10.1126/science.1091015

    Article  CAS  Google Scholar 

  • Doyle MW, Yates AJ (2010) Stream ecosystem service markets under no-net-loss regulation. Ecol Econ 69(4):820–827

    Article  Google Scholar 

  • Egan T (2006) The worst hard time: the untold story of those who survived the great American Dust Bowl. Houghton Mifflin, Boston

  • Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft C, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 50:RG1002. doi:10.1029/2011RG000359

    Article  Google Scholar 

  • Florsheim JL, Dettinger MD (2007) Climate and flood variability still govern levee breaks. Geophys Res Lett 34:L22403. doi:10.1029/2007GL031702

    Article  Google Scholar 

  • Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Glob Environ Chang 16:253–267

    Article  Google Scholar 

  • Friedrichs CT, Perry JE (2001) Tidal salt marsh morphodynamics: a synthesis. J Coast Res 27:7–37

    Google Scholar 

  • Galvin KA, Thornton PK, de Pinho JR, Sunderland J, Boone RB (2006) Integrated modeling and its potential for resolving conflicts between conservation and people in the rangelands of east Africa. Hum Ecol 34:155–183. doi:10.1007/s10745-006-9012-6

    Article  Google Scholar 

  • Gibling MR, Davies NS (2012) Palaeozoic landscapes shaped by plant evolution. Nat Geosci 5:99–105. doi:10.1038/NGEO1376

    Article  CAS  Google Scholar 

  • Gleason ML, Elmer DA, Pien NC, Fisher JS (1979) Effects of stem density upon sediment retention by salt marsh cord grass, Spartina alterniflora Loisel. Estuaries 2:271–273. doi:10.2307/1351574

    Article  Google Scholar 

  • Gopalakrishnan S, Smith MD, Slott JM, Murray AB (2011) The value of disappearing beaches: a hedonic model with endogenous beach width. J Environ Econ Manag 61:297–310. doi:10.1016/j.jeem.2010.09.003

    Article  Google Scholar 

  • Goudie AS (1983) Dust storms in space and time. Prog Phys Geogr 7:502–530

    Article  Google Scholar 

  • Goudie AS (2006) The human impact on the natural environment, 6th edn. Blackwell, Oxford

    Google Scholar 

  • Goudie AS, Middleton NJ (1992) The changing frequency of dust storms through time. Clim Chang 20:197–225. doi:10.1007/BF00139839

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204

    Article  CAS  Google Scholar 

  • Goudie AS, Viles H (2010) Landscapes and geomorphology: a very short introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gregory KJ (2006) The human role in changing river channels. Geomorphology 79:172–191

    Article  Google Scholar 

  • Grimm NB, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. Bioscience 50:571–584

    Article  Google Scholar 

  • Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci Rev 54:43–80

    Article  CAS  Google Scholar 

  • Head L (2008) Is the concept of human impacts past its use-by date? Holocene 18:373–377. doi:10.1177/0959683607087927

    Article  Google Scholar 

  • Hickin EJ, Nanson GC (1975) The character of channel migration on the Beatton River, north-east British Columbia. Bulletin of the Geological Society of America 86(4):487–494

    Google Scholar 

  • Imbernon J (1999) Pattern and development of land-use changes in the Kenyan highlands since the 1950s. Agric Ecosyst Environ 76:67–73

    Article  Google Scholar 

  • James LA, Marcus WA (2006) The human role in changing fluvial systems: retrospect, inventory, and prospect. Geomorphology 79:152–171. doi:10.1016/j.geomorph.2006.06.017

    Article  Google Scholar 

  • Jordan TE, Sala OE, Stafford SG, Bubier JL, Crittenden JC, Cutter SL, Kay AC, Libecap GD, Moore JC, Rabalais NN, Shepherd JM, Travis J (2010) Recommendations for interdisciplinary study of tipping points in natural and social systems. EOS 91:143–144. doi:10.1029/2010EO160005

    Article  Google Scholar 

  • King CAM (1970) Feedback relationships in geomorphology. Geogr Ann Ser A 52:147–159

    Article  Google Scholar 

  • Kirwan ML, Murray AB (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci USA 104:6118–6122

    Article  CAS  Google Scholar 

  • Kondolf GM, Podolak K (2013) Space and time scales in human-landscape systems. Environ Manag (this issue)

  • Klimas CV (1981) Baldcypress response to increased water levels, Caddo Lake, Louisiana–Texas. Wetlands 7:25–37

    Article  Google Scholar 

  • Knighton D (1998) Fluvial forms and process: a new perspective. Oxford University Press, New York

  • Knowles N, Cayan DR (2002) Potential effects of global warming on the Sacramento/San Joaquin watershed and the San Francisco estuary. Geophys Res Lett. doi:10.1029/2001GL014339

    Google Scholar 

  • Kohfeld KE, Harrison SP (2001) DIRTMAP: the geological record of dust. Earth Sci Rev 54:81–114

    Article  CAS  Google Scholar 

  • Lazarus ED, McNamara DE, Smith MD, Gopalakrishnan S, Murray AB (2011) Emergent behavior in a coupled economic and coastline model for beach nourishment. Nonlinear Process Geophys 18:989–999. doi:10.5194/npg-18-989-2011

    Article  Google Scholar 

  • Leopold LB (1956) Land use and sediment yield. In: Thomas WL Jr (ed) Man’s role in changing the face of the earth. University of Chicago Press, Chicago, pp 639–647

    Google Scholar 

  • Lew B, Costanza R, Ostrom E, Wilson J, Simon CP (1999) Human ecosystem interactions: a dynamic integrated model. Ecol Econ 31:227–242

    Article  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J, Ostrom E, Ouyang Z, Provencher W, Redman CL, Schneider SH, Taylor WW (2007a) Complexity of coupled human and natural systems. Science 317:1513–1516

    Article  CAS  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Folke C, Alberti M, Redman CL, Schneider SH, Ostrom E, Pell AN, Lubchenco J, Taylor WW, Ouyang Z, Deadman P, Kratz T, Provencher W (2007b) Coupled human and natural systems. Ambio 36:639–649

    Article  Google Scholar 

  • Harden CP, Chin A, English MR, Fu R, Galvin KA, Gerlak AK, McDowell PF, McNamara DE, Peterson JM, Poff NL, Rosa EA, Solecki W, Wohl E (2013) Understanding human-landscape interactions in the “Anthropocene”. Environ Manag (this issue)

  • MacKinnon D, Derickson KD (2013) From resilience to resourcefulness: a critique of resilience policy and activism. Progress in Human Geography 37(2):253–270

    Google Scholar 

  • Mahowald NM (2011) Aerosol indirect effect on biogeochemical cycles and climate. Science 334:794–796. doi:10.1126/science.1207374

    Article  CAS  Google Scholar 

  • Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111:D10202. doi:10.1029/2005JD006653

    Article  Google Scholar 

  • Marsh GP (1864) Man and nature. Harvard University Press, Cambridge Reprinted in 1965

    Google Scholar 

  • Marston RA (2010) Geomorphology and vegetation on hillslopes: interactions, dependencies, and feedback loops. Geomorphology 116:206–217

    Article  Google Scholar 

  • McNamara DE, Werner BT (2008) Coupled barrier island–resort model: 1. Emergent instabilities induced by strong human–landscape interactions. J Geophys Res 113:F01016. doi:10.1029/2007JF000840

    Google Scholar 

  • McNamara DE, Murray AB, Smith MD (2011) Coastal sustainability depends on how economic and coastline responses to climate change affect each other. Geophys Res Lett 38:L07401. doi:10.1029/2011GL047207

    Article  Google Scholar 

  • Montgomery DR (2007) Dirt: the erosion of civilizations. University of California Press, Berkeley

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Mudd SM, D’Alpaos A, Morris JT (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J Geophys Res 115:F03029. doi:10.1029/2009JF001566

    Google Scholar 

  • Mulitza S, Heslop D, Pittauerova D, Fischer HW, Meyer I, Stuut J-B, Zabel M, Mollenhauer G, Collins JA, Kuhnert H, Schulz M (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature. doi:10.1038/nature09213

    Google Scholar 

  • Murray AB, Knaapen MAF, Tal M, Kirwan ML (2008) Biomorphodynamics: physical–biological feedbacks that shape landscapes. Water Resour Res 44:W11301. doi:10.1029/2007WR006410

    Article  Google Scholar 

  • National Research Council (NRC) (2004) Facilitating interdisciplinary research. The National Academies Press, Washington

    Google Scholar 

  • National Research Council (NRC) (2010) Landscapes on the edge: new horizons for research on Earth’s surface. The National Academies Press, Washington

    Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. doi:10.1038/ngeo133

    Article  CAS  Google Scholar 

  • NSF Advisory Committee for Environmental Research and Education (AC-ERE) (2005) Complex environmental systems: pathways to the future. http://www.nsf.gov/geo/ere/ereweb/acere_synthesis_rpt.cfm. Accessed 10 Feb 2012

  • Osterkamp WR, Hupp CR (2010) Fluvial processes and vegetation—glimpses of the past, present, and future. Geomorphology 116:274–285. doi:10.1016/j.geomorph.2009.11.018

    Article  Google Scholar 

  • Pastore CL, Green MB, Bain DJ, Munoz-Hernandez A, Vorosmarty CJ, Arrigo J, Brandt S, Duncan JM, Greco F, Kim H, Kumar S, Lally M, Parolari AJ (2010) Tapping environmental history to recreate America’s colonial hydrology. Environ Sci Technol 44:8798–8803

    Article  CAS  Google Scholar 

  • Peterson JM, Caldas M, Bergtold J, Sturm B, Earnhart D, Hanley E, Graves R, Brown JC (2013). Economic linkages to changing landscapes. Environ Manag (this issue)

  • Pfirman S, AC-ERE (2003) Complex environmental systems: synthesis for Earth, life, and society in the 21st century, a report summarizing a 10-year outlook in environmental research and education for the National Science Foundation. http://www.nsf.gov/geo/ere/ereweb/acere_synthesis_rpt.cfm. Accessed 10 Feb 2012

  • Phillips JD (2009) Changes, perturbations, and responses in geomorphic systems. Prog Phys Geogr 33:17–30

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys. doi:10.1029/2000RG000095

    Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic, London

    Google Scholar 

  • Reheis MC, Kihl R (1995) Dust deposition in southern Nevada and California, 1984–1989: relations to climate, source area, and source lithology. J Geophys Res 100:8893–8918

    Article  CAS  Google Scholar 

  • Reid L (2001) Cumulative watershed effects: then and now. Watershed Manag Counc Netw Summer 2001:24–33

    Google Scholar 

  • Reinhardt L, Jerolmack D, Cardinale BJ, Vanacker V, Wright J (2010) Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. Earth Surf Proc Land 35:78–101. doi:10.1002/esp.1912

    Article  Google Scholar 

  • Restrepo C, Walker LR, Shiels AB, Bussmann R, Claessens L, Fisch S, Lozano P, Negi G, Paolini L, Poveda G, Ramos-Scharrón C, Richter M, Velázquez E (2009) Landsliding and its multiscale influence on mountainscapes. Bioscience 59:685–689. doi:10.1525/bio.2009.59.8.10

    Article  Google Scholar 

  • Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Res Appl 22:297–318. doi:10.1002/rra.892

    Article  Google Scholar 

  • Ritter DE, Kochel RC, Miller JR (2002) Process geomorphology, 4th edn. Waveland, Illinois

    Google Scholar 

  • Rodriguez-Iturbe I, González-Sanabria M, Bras RL (1982) A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resour Res 18:877–886. doi:10.1029/WR018i004p00877

    Article  Google Scholar 

  • Roe GH, Montgomery DR, Hallet B (2002) Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology 30(2):143–146

    Google Scholar 

  • Schumm SA (1973) Geomorphic thresholds and complex response of drainage systems. In: Morisawa M (ed) Fluvial geomorphology. New York State University Publications in Geomorphology, Binghamton, pp 299–309

    Google Scholar 

  • Schumm SA, Lichty RW (1965) Time, space, and causality in geomorphology. Am J Sci 263:110–119. doi:10.2475/ajs.263.2.110

    Article  Google Scholar 

  • Smith MD, McNamara D, Slott JM, Murray AB (2009) Beach nourishment as a dynamic capital accumulation problem. J Environ Econ Manag 58:58–71. doi:10.1016/j.jeem.2008.07.011

    Article  Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523. doi:10.1038/nature04389

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stallins JA (2006) Geomorphology and ecology: unifying themes for complex systems in biogeomorphology. Geomorphology 77:207–216. doi:10.1016/j.geomorph.2006.01.005

    Article  Google Scholar 

  • Strahler AN (1956) The nature of induced erosion and aggradation. In: Thomas WL Jr (ed) Man’s role in changing the face of the earth. University of Chicago Press, Chicago, pp 621–638

    Google Scholar 

  • Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720):376–380

    Article  CAS  Google Scholar 

  • Tegen I, Koch D, Lacis AA, Sato ML (2000) Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: a model study. J Geophys Res 105:26971–26989. doi:10.1029/2000JD900280

    Article  CAS  Google Scholar 

  • Temmerman S, Bouma TJ, Van de Koppel J, Van der Wal D, De Vries MB, Herman PMJ (2007) Vegetation causes channel erosion in a tidal landscape. Geology 35:631–634. doi:10.1130/G23502A.1

    Article  Google Scholar 

  • Thomas WL Jr (1956) Man’s role in changing the face of the earth. University of Chicago Press, Chicago

    Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9(2):5

    Google Scholar 

  • Walling DE, Fang D (2003) Recent trends on the suspended sediment load of the world’s rivers. Glob Planet Chang 39:111–126

    Article  Google Scholar 

  • Walter RC, Merritts DJ (2008) Natural streams and the legacy of water-powered mills. Science 319:299–304

    Article  CAS  Google Scholar 

  • Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geogr 93:297–313

    Article  Google Scholar 

  • Werner BT, McNamara DE (2007) Dynamics of coupled human–landscape systems. Geomorphology 91:393–407

    Article  Google Scholar 

  • Wheaton JM, Gibbins C, Wainwright J, Larsen L, McElroy B (2011) Preface: multiscale feedbacks in geomorphology. Geomorphology 126:265–268

    Article  Google Scholar 

  • Whipple KX (1999) The influence of climate on the tectonic evolution of mountain belts. Nat Geosci 2:97–104

    Article  CAS  Google Scholar 

  • Willett SD (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J Geophys Res 104:28957–28982

    Article  Google Scholar 

  • Willett SD, Brandon MT (2002) On steady states in mountain belts. Geology 30(2):175–178

    Article  Google Scholar 

  • Williams M, Zalasiewicz J, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Theme Issue. Philos Trans R Soc A 369:833–1112

    Google Scholar 

  • Wohl E (2009) Island of grass. University Press of Colorado, Boulder, CO

  • Wohl E, Cenderelli DA, Dwire KA, Ryan-Burkett SE, Young MK, Fausch KD (2010) Large in-stream wood studies: a call for common metrics. Earth Surf Proc Land 35:618–625. doi:10.1002/esp.1966

  • Wohl E, Gerlak AK, Poff NL, Chin A. (2013) Common core themes in geomorphic, ecological and social systems. Environ Manag (this issue)

  • Wolman MG, Gerson R (1978) Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf Process 3:189–208

    Article  Google Scholar 

  • Womble P, Doyle MW (2012) The geography of trading ecosystem services: a case study of wetland and stream compensatory mitigation markets. Harv Environ Law Rev 36(1):229–296

    Google Scholar 

  • Zalasiewicz J, Williams M, Smith A, Barry TL, Coe AL, Bown PR, Brenchley P, Cantrill D, Gale A, Gibbard P, Gregory FJ, Hounslow MW, Kerr AC, Pearson P, Knox R, Powell J, Waters C, Marshall J, Oates M, Rawson P, Stone P (2008) Are we now living in the Anthropocene? GSA Today 18:4–8

    Article  Google Scholar 

  • Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Philos Trans R Soc A 369:835–841. doi:10.1098/rsta.2010.0339

    Article  Google Scholar 

  • Zvoleff A, An L (2013) Analyzing human-landscape interactions: tools that integrate. Environ Manag. doi:10.1007/s00267-012-0009-1

Download references

Acknowledgments

The U.S. National Science Foundation sponsored the workshop (Landscapes in the Anthropocene: Exploring the Human Connections EAR 0952354 and 1045002) that led to this paper. Laura Laurencio provided assistance with manuscript preparation. We appreciate the helpful comments by KJ Gregory and three anonymous reviewers that improved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Chin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, A., Florsheim, J.L., Wohl, E. et al. Feedbacks in Human–Landscape Systems. Environmental Management 53, 28–41 (2014). https://doi.org/10.1007/s00267-013-0031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0031-y

Keywords

Navigation